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Atlantic halibut (Hippoglossus hippoglossus) support an economically important fishery on the eastern coast of Canada. Like other species that
are not well sampled by trawl surveys, halibut in this area are monitored using longline surveys. These surveys present challenges that can make
obtaining indices of abundance difficult. Issues include gear saturation, which can result in a non-linear relationship between catch per unit effort
and local abundance. The current approach to obtain a relative index consists of fitting a multinomial exponential model to a subset of hooks from
each survey station. While this approach accounts for hook competition, it does not account for the presence of spatial patterns. We therefore
extend the multinomial exponential model to include spatial random fields for both Atlantic halibut and non-target species, set-specific soak time,
and data from the hooks. Furthermore, we propose a method for aggregating the resulting spatially varying indices to obtain an annual index
for the entirety of the modelled area. This novel approach identifies Atlantic halibut hotspots in multiple years, while simultaneously providing
relative abundance indices for 2017 through 2020. These outcomes demonstrate the widespread applicability of our methods for improving the
scientific advice upon which fisheries management decisions are based.
Keywords: fisheries, Gaussian random field, geostatistics, hierarchical model, longline survey, multinomial model, Template Model Builder (TMB).

Introduction

The management of economically important fisheries is a dif-
ficult and laborious process where fisheries scientists must ex-
tract the best possible indicators of population size and abun-
dance from noisy fisheries data. The resulting estimates and
their associated errors are used by fisheries managers to de-
velop fishing targets aimed at ensuring the sustainability of
both the exploited population and the fishery exploiting it.
The difficulty in analyzing fisheries data stems from the fact
that they are typically noisy (Punt et al., 2000), contain com-
plex non-linear relationships (e.g. Froese, 2006; Morson et al.,
2018), and often follow non-Gaussian distributions (Martin
et al., 2005; Cressie et al., 2009; Etienne et al., 2013). While
various methods have been developed to obtain reliable in-
dices of population abundance (e.g. through better stratifica-
tion approaches and sampling designs; Smith, 1996; Kimura
and Somerton, 2006), these can be harder to apply to data
from non-trawl surveys such as longline surveys.

The main difficulty in assessing longline survey data is that
the raw data are not well captured by the usual continuous dis-
tributions employed to obtain indices of abundance (e.g. log-
normal distributions; Hansell et al., 2020). Many approaches
have been proposed to attempt to deal with this issue, mostly
revolving around standardizing the raw data into catch rates
and catch per unit effort (CPUE), which are defined as the av-
erage number of fish of the target species caught per hook and
minute of soak time (Etienne et al., 2013). For the Atlantic hal-
ibut (Hippoglossus hippoglossus) fishery on the eastern coast
of Canada, initial efforts saw design-based approaches used to
obtain stratified weighted mean catch rates. Further improve-
ments were made to better standardize these catch rates by

combining a design-based approach with a statistical mod-
elling framework that used a negative binomial generalized
linear model (GLM) (Trzcinski et al., 2009; den Heyer et al.,
2015a). While these innovations led to significant improve-
ments, other issues were identified that could potentially bias
these abundance indices.

Previously available methods were not able to account for
the impacts of gear saturation and competition for baited
hooks within and between species (Etienne et al., 2013; Smith,
2016), and these methods further assumed that all hooks on
a longline are capable of catching fish for the duration of the
line’s deployment. They also ignored unbaited empty hooks
that would not reliably catch fish in the same way as baited
hooks. Any one of these issues would result in decreased effi-
ciency of fishing effort while also leading to bias in estimated
indices of abundance (Beverton and Holt, 1957). A solution to
account for competition between target and non-target species
for baited hooks as well as the treatment of empty-unbaited
hooks is to use a multinomial exponential model (MEM),
originally proposed by Rothschild (1967) and modified by Eti-
enne et al. (2013). While MEM performs well in its standard
formulation (Etienne et al., 2013), it does not account for spa-
tial patterns in the data. Given the scale and environmental
complexity of fisheries management units for Atlantic halibut
in general, the indices produced using the MEM would no
doubt benefit from the inclusion of spatial effects to account
for possible spatial patterns in fish abundance.

Models that include spatially correlated random effects are
becoming increasingly popular in fisheries science. These mod-
els have been used to standardize CPUE data and improve esti-
mated abundance indices (Nishida and Chen, 2004; Thorson
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Figure 1. Locations of longline survey stations in 2017, 2018, 2019, and 2020. The 3NOPs4VWX5Zc Atlantic halibut stock survey area is denoted by the
coloured area, with five area strata: 4X5YX (blue), 4W (orange), 4V (purple), 3P (green), and 3NO (red), and three depth strata: 30–130 m (light colour),
131–250 m (medium colour), and 251–750 m (dark colour). NAFO subdivsions are labelled, and separated by solid lines. The exclusive economic zones of
Canada and France are shown with dashed lines. NAFO subdivision 3Pn is not part of the stock area, but is currently included in the survey. Black
triangles are the successfully completed stations and red triangles are the incomplete stations. Scale bar is in kilometres.

and Ward, 2013; Shelton et al., 2014), and predict bycatch
hotspots (Cosandey-Godin et al., 2015; Yan et al., 2021). Uti-
lizing geostatistics, they incorporate spatial structure in the
model residuals (Ciannelli et al., 2008) to capture the latent
spatial variability not explained by the covariates included
in the model framework (Cadigan et al., 2017; Stock et al.,
2020). These methods have been applied to both invertebrate
and groundfish species (e.g. Thorson et al., 2015; McDonald
et al., 2021), but for many key species these methods have not
been tested.

In this paper, we propose a novel statistical framework in
which a multinomial model for hook competition (MEM)
is integrated with a spatial model for station-specific data
(MEMSpa). We include Gaussian random fields as spatial ran-
dom effects for both target and non-target species to infer their
underlying population distributions from survey data. We un-
dertake a simulation study to explore the estimability of this
novel approach under two different scenarios. We then fit our
new model to data from the Scotian Shelf and Southern Grand
Banks Atlantic halibut longline survey, which provides an in-
dex of abundance for one of the most valuable groundfish
fisheries in eastern Canada. As this new model allows the es-
timation of relative abundance indices at each survey station,

we aim to evaluate the effectiveness of the current stratifica-
tion scheme for the area, while simultaneously presenting a
method to estimate an aggregate overall abundance index for
the entire region.

Material and methods

Data description

Atlantic halibut is an economically important demersal flatfish
that is distributed on the continental shelf and along the shelf
edge across the North Atlantic Ocean and in part of the Arc-
tic Ocean. There are two Atlantic halibut management units
in Canadian waters, namely the Scotian Shelf and southern
Grand Banks (North Atlantic Fisheries Organization [NAFO]
Divisions 3NOPs4VWX5Zc), and the Gulf of St. Lawrence
(4RST). We focus on 3NOPs4VWX5Zc (Figure 1), where the
biomass of exploitable halibut has been monitored by a Fish-
eries and Oceans Canada-Industry collaborative longline sur-
vey since 1998. The longline survey was established because
Atlantic halibut, as the largest flatfish species, were not well
sampled by research vessel (RV) trawl surveys that provide
the primary fishery-independent abundance indices for other
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groundfish stocks in Atlantic Canada (Zwanenburg et al.,
2003).

The longline survey provides internally consistent estimates
of Atlantic halibut relative abundance and does not suffer
from the high variability observed in the RV survey results
because it has a much higher catchability for Atlantic hal-
ibut (Zwanenburg et al., 2003). Longlines are placed at the
seafloor (demersal longlines) to catch bottom-dwelling fish
such as halibut. As their name implies, longlines consist of a
long mainline to which baited hooks are attached at regular
intervals by way of a branch line or gangion. The Atlantic hal-
ibut longline survey is completed by commercial fishers with
at-sea observers collecting data and ensuring compliance to
survey protocols. While the survey was originally stratified
into areas of low, medium, and high catch rates based on data
from commercial fishing logs (1995–1997) (Zwanenburg and
Wilson, 2000), a new stratified random survey design was in-
troduced in 2017 to expand geographic coverage, standardize
fishing protocols, and improve data collection (Smith, 2016;
Cox et al., 2018). Here we focus on the data from this new
stratification scheme (2017–2020).

The stratified random survey area is divided into five area
strata (NAFO Divsions 4X5YZ, 4W, 4V, 3P, and 3NO), each
with three depth strata (30–130, 131–250, and 251–750 m).
While the management area does not include 3Pn, it is in-
cluded in the survey. The depth stratum boundaries (30–
750 m) were chosen because they contain most of the fish-
ing sets and Atlantic halibut habitat (Cox et al., 2018). Depth
strata were selected based on exploratory analyses of catch
rates by depth using fixed stations and commercial index sets
from the original Atlantic halibut survey. The depth stratifi-
cation can also provide a proxy for temperature and some
bottom habitat information. Survey stations are randomly as-
signed to strata with the number of stations allocated propor-
tionally to the size of each stratum. A total of 150 stations
were allocated in 2017, and 153 stations were allocated in
each year from 2018 to 2020 (Figure 1). Additional stations
were added to strata that had contained only two stations in
an effort to reduce the probability of unfished strata or strata
with only one station fished.

Gear design and fishing procedures were standardized. Each
set had 1 000 baited hooks, with gangions spaced 4.6–5.5 m
apart for a total length of gear between 4.6 and 5.5 km. Size
15 circle hooks were baited with pieces of herring (125–200 g)
and the gear was set for between 6 and 12 h. In area strata
4X5YZ, 4W, and 4V, a sinking mainline was used, while in
area strata 3P and 3NO a buoyant polypropylene rope was
used to which (454–1815 g; 1–4 lb) weights are attached. The
more buoyant line was thought to mitigate against bait loss in
some bottom types (mud versus rock). Gear type is therefore
expected to impact the performance of the gear; however, the
hook occupancy data (empty with bait versus empty with no
bait) will also reflect the differences in the gear. Hook condi-
tion data were collected by trained observers who monitor the
longline and record location, depth, and time for the setting of
the gear and the haul back. For each longline, every Atlantic
halibut was counted, its length measured, and although our
work here only focuses on the number of fish, its weight was
estimated. The total kept and discarded catch (number and
weight) of other species was also estimated for each longline.
[see den Heyer et al. (2015b) for details].

An unpublished internal pilot study, and subsequent math-
ematical modelling, indicated observing hook condition in a

subset of 300 hooks is sufficient to be representative of the
entire 1 000 hooks. Hook condition is assessed and recorded
from 300 hooks for each 1 000 hook longline set. For each set,
the 300–hook sample consists of 10 subsamples of 30 con-
secutive hooks, wherein these subsamples are taken roughly
every 100 hooks. This results in sampling throughout the
longline and avoids bias associated with sampling only the
beginning, end, or middle of the set. The condition of each
hook at retrieval in the hook occupancy sample was recorded,
by assessing whether the hook was baited, empty, or with
a catch and the species caught. For each longline, we ob-
tained counts of hooks with target catch, hooks with non-
target catch, empty-baited hooks, empty-unbaited hooks, and
broken hooks. While only a subset of the 1 000 hooks (per
set) had every hook status recorded, there is still information
available for the rest of the set that can be incorporated in
the model, namely, the number of target species caught (hal-
ibut), the estimated number of non-target species caught, and
the number of empty hooks (which could be unbaited, baited,
or broken). Temperature recorders (VEMCO minilogs) were
attached to most longlines and information on temperature,
depth, and soak time for each longline set is also included
along with other essential information (see Supplementary
Section S2 for additional details).

Multinomial exponential model

MEM
The original MEM was proposed by Rothschild (1967) to take
account of interspecific hook competition in longline fishing.
In this formulation and after the soak period, there are two
possible outcomes for each individual hook on the line: the
hook is still baited or the hook has caught something. This
catch can either be a target or a non-target species. For the
ith longline, we let NB, i, NT, i, and NNT, i, respectively, be the
number of baited hooks, hooks with target species and hooks
with non-target species, and Ni = NB, i + NT, i + NNT, i be the
number of hooks on the line. Assuming the time to catch a
target and non-target species on one particular hook follow
independent exponential distributions with rates λT and λNT,
then among the Ni hooks on the line, the vector (NB, i, NT, i,
NNT, i) follows a multinomial distribution

(NB,i, NT,i, NNT,i) ∼ M(Ni,αi), (1)

αi =
(

e−λSi ,
(
1 − e−λSi

)λT

λ
,
(
1 − e−λSi

)λNT

λ

)
, (2)

where Si is the soak time for the ith longline and λ = λT +
λNT. λT and λNT can also be regarded as relative abundance
indices for the target and non-target species, respectively.

However, it is common for some hooks to return with no
bait and no fish at the end of soak time in longline fishing and
surveys. The original MEM was therefore modified by Eti-
enne et al. (2013) to account for these empty-unbaited hooks
(which also include broken or missing hooks) so that more
precise estimates of indices of relative abundance could be ob-
tained. It is assumed that all empty-unbaited hooks are caused
by the escape of fish (i.e. the fish “steals” the bait).

Etienne et al. (2013) proposes two different situations. The
first situation (MEM1) assumes that empty-unbaited hooks
are caused by non-target species taking the bait and escap-
ing with the corollary that the probability of escape for target
species would be zero. The second situation (MEM2) assumes
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that the escaping rate is the same for target and non-target
catch. However, those who have investigated the impact of
bait loss on longline estimates have generally assumed that
missing baits were caused by non-target fish (Bjordal, 1983;
Hovgård and Lassen, 2000; Webster and Hare, 2009). Be-
cause the longline gear and survey were designed for catch-
ing and retaining the target species through the choice of
bait, hook type and size, depth, and timing, escape would be
more likely for those non-target individuals that encounter
the line. In addition, it is very unlikely that the abundance
of the target species would be greater than that of all other
non-target species that could be caught (Etienne et al., 2013).
Therefore, MEM1 is preferred here, where we let NE, i be
the number of empty-unbaited hooks on a longline, and pNT

be the probability of escape of a non-target fish, respec-
tively. Assuming fish escape independently of one another,
then

(NB,i, NT,i, NNT,i, NE,i) ∼ M(Ni,αi), (3)

αi =
(
e−λSi ,

(
1 − e−λSi

)λT

λ
,
(
1 − e−λSi

)λNT

λ

(
1 − pNT

)
,

(
1 − e−λSi

)λNT pNT

λ

)
, (4)

where Ni = NB, i + NT, i + NNT, i + NE, i.
This model was developed in the llsurv package in R (R

Core Team, 2021) for the Atlantic halibut Scotian Shelf and
Southern Grand Banks Fisheries and Oceans Canada-industry
collaborative longline surveys (Smith, 2016) using explicit for-
mulae to compute maximum likelihood estimates of the multi-
nomial model parameters in order to estimate relative abun-
dance. In this formulation, it was assumed that Si was constant
across all sets by using the mean soak time.

Spatial multinomial exponential model (MEMSpa)
The Gaussian random field is a popular geostatistical tool for
modelling spatial processes, since it is fully characterized by
its mean and covariance function. A general choice for an
isotropic parametric covariance function is the Matérn covari-
ance function (Guttorp and Gneiting, 2006), where the covari-
ance of the random variables at two locations, ω(s1) and ω(s2),
is a function of the distance h between the two locations in the
following way:

C(h; φ, σ, ν ) = σ 2

�(ν ) 2ν−1

(
h
φ

)ν

Kν

(
h
φ

)
, (5)

where h = ‖s1 − s2‖, σ 2 is the marginal variance of the ran-
dom field, ν > 0, and φ > 0 are the smoothness and range
parameter, and Kν is the modified Bessel function of the sec-
ond kind of order ν.

The Matérn model is identifiable, although joint estimates
are generally highly variable (Zhang, 2004), and the common
approach to fix ν = 1 (Lindgren et al., 2011; Thorson et al.,
2015) is also used here. The so-called practical, effective, or
decorrelation range, which is the distance at which the corre-
lation of the random field decreases to 0.05, equals 3φ for ν

= 1.
In the previously described MEMs (Equations 1–4), abun-

dance indices for the target λT and non-target species λNT are
assumed to be constant over space. Alternatively, we propose
to extend the MEM1 to allow spatially varying and correlated
abundance indices for both the target and non-target species

by adding Gaussian spatial random fields to both λT and λNT

on the log scale such that

log λT (s) = βT,0 + ωT (s), (6)

log λNT (s) = βNT,0 + ωNT (s), (7)

where λT (s) and λNT (s) are relative abundance indices for tar-
get and non-target species at location s, ωT (s), and ωNT (s)
are the values of the underlying Gaussian random fields at
location s, and βT, 0 and βNT, 0 are intercept parameters. This
opens up the possibility of incorporating set-specific covari-
ates into both λT and λNT in the future or for other surveys or
fisheries, although our preliminary analysis indicated that the
intercept-only model performed best out of the different mod-
els with different covariates that we tested (see Supplementary
Section S2 for details).

The main multinomial part of MEMSpa is therefore almost
identical to Equations 3 and 4 except that it is applied sepa-
rately at each survey station meaning that Equation 4 is mod-
ified to be the following:

αi =
(
e−λ(si )Si ,

(
1 − e−λ(si )Si

) λT (si)
λ(si)

,

(
1 − e−λ(si )Si

) λNT (si)
λ(si)

(
1 − pNT

)
,

(
1 − e−λ(si )Si

) λNT (si)pNT

λ(si)

)
, (8)

where (si) is the location of a given survey station i.
We projected the longitude and latitude of the survey sta-

tions using the WGS84––UTM zone 20N coordinate reference
system into eastings and northings in kilometers. Furthermore,
we re-scaled the eastings and northings to a range between
zero and one for numerical stability.

The model is formulated in C++ and then optimized in R
using the TMB package (Kristensen et al., 2016). The TMB
package helps to speed up the optimization by taking advan-
tage of automatic differentiation and the Laplace approxima-
tion for integrating over random effects (see Kristensen et al.,
2016 for details).

One advantage of utilizing classical geostatistical methods
as we do here is the ability to predict the abundance index
across the entire modelled area through the use of kriging.
Kriging is a method of spatial interpolation by which the inter-
polated values are modelled with a Gaussian process governed
by a prior covariance function (Gelfand et al., 2010). The
random fields for target species ωT (s) and non-target species
ωNT (s) can therefore be interpolated over a grid covering the
modelled area. For the halibut survey, this grid is made up of
4 × 4 km blocks, with the interpolation done at the centre of
each block (Cox et al., 2018).

Product likelihood approach
The MEM (Etienne et al., 2013) was created to work with
a subset of sets for which all information was available: the
number of target and non-target species caught, along with
the status of empty hooks. For the halibut survey, a reduced
amount of information is available for the other 700 hooks,
namely the number of target species caught (while the number
of non-target species fish caught was estimated based on the
weight of caught non-target species). Consequently for the un-
observed hooks, there is no information on whether the other
empty hooks are still baited or not (in notation, NB, i, and NE, i
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Figure 2. The survey stations and the Dirichlet tessellation for 2017, 2018, 2019, and 2020.

are not available for these hooks). To incorporate this infor-
mation into the model, a reduced multinomial model is created
in the following way:

(NT,i, NNT,i, NBE,i) ∼ M(Ni,αi), (9)

αi =(
(1 − e−λSi )

λT

λ
, (1 − e−λSi )

λNT

λ
(1 − pNT ),

1 − (1 − e−λSi )
λT

λ
− (1 − e−λSi )

λNT

λ
(1 − pNT )

)
,

(10)

where NBE, i = NB, i + NE, i is the number of hooks with-
out fish and Ni is the number of hooks on a longline. To
include data from all 1 000 hooks, we used the product of
likelihood functions for the full multinomial model (300 ob-
served hooks) and the reduced multinomial model (700 “un-
observed” hooks). An imputation method for the extra 700
hooks was explored but was considered less applicable than
the product likelihood method due to issues with error prop-
agation (see Supplementary Figure S3 for further details).

Aggregated relative abundance indices
MEMSpa provides estimated halibut abundance indices at
each survey station, with an extra step required to obtain a sin-
gle index of abundance for the entire area management. While
two different approaches were explored for this purpose, we
settled on a Dirichlet method (see Supplementary Figure S4
and further details on the alternative explicit method).

The Dirichlet method uses area weighted averages of survey
indices aggregated at the level of the survey stations. A Dirich-
let tessellation of the survey stations was computed using func-
tions from the R package spatstat (Baddeley et al., 2015). We
used the function ppp with locations of the survey stations to
form the spatial point pattern and specify the enclosing poly-
gon. The Dirichlet tile associated with a particular station i is

the region that is closer to station i than to any other stations.
The dirichlet function is used to divide the survey area into
Dirichlet tiles, i.e. into disjoint regions, forming the tessella-
tion (Figure 2). Finally, we calculated the weighted average of
the estimated survey indices corresponding to each survey sta-
tion obtained by our spatial model with weights equal to the
area of each Dirichlet tile.

λ̄ =
∑I

i=1 Aiλ̂(si)∑I
i=1 Ai

,

where Ai is the area of the Dirichlet tile associated with the
ith station, λ̂(si) is the corresponding estimated relative abun-
dance index for the ith station, and I is the total number of
longline stations of interest. The Delta Method (Bickel and
Doksum, 2015) was used to estimate the corresponding stan-
dard errors.

Simulation experiments

Two simulation experiments were conducted to assess the es-
timability and identifiability of MEMSpa using the product
likelihood approach, with the focus on parameter estimation
and the estimation of abundance indices. Both data simulation
and model fitting were performed using TMB, where data are
simulated from Equations 6–10. The first experiment mod-
elled a higher mean probability of capture for the target than
the non-target species, but both had relatively high probability
of capture (set respectively at 2×10−3 and 1×10−3). The sec-
ond examines how the MEMSpa estimation performs when
the target species has a very low probability of capture relative
to that of the non-target species (set respectively at 1.88×10−5

and 1.94×10−3). The goal of these simulations was to see if a
fish being a target or non-target has any effect on parameter
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Table 1. Parameter values used for the two simulation experiments.

Parameter Experiment 1 Experiment 2

βT 2×10−3 1.88×10−5

βNT 1×10−3 1.94×10−3

pNT 0.8795 0.8795
φT 0.07 0.07
φNT 0.1 0.1
σ 2

T 3 3
σ 2

NT 1.5 1.5

estimability, and determine if fitting problems are introduced
when one of them has a very low probability of capture.

For each experiment, 500 datasets with 150 observations
of 1 000 hooks were simulated with ν fixed at 1 (300 hooks
were simulated from the full multinomial model and 700 from
the reduced one). As the soak time and the distance between
each station are not explicitly modelled in Equations 6–10,
they needed to be simulated separately. A unitless simulation
square with an area of 9.3262 was created to most closely
mirror the unitless standardized distances in the 2017 halibut
survey data. The locations of the observations were randomly
distributed across the square to obtain the distances between
them. The soak times were simulated from a lognormal dis-
tribution with a mean of 450 min (7.5 h) on the natural scale
and a standard deviation of 0.2 on the log scale.

True values for the parameters are provided in Table 1.
The maximization of the likelihood was performed using the
quasi-Newton optimizer nlminb in R.

Halibut survey

To test the performance of MEMSpa with real data, it was fit-
ted separately to data from the halibut survey in NAFO divi-
sion 3NOPs4VWX5Zc (Figure 1) for 2017, 2018, 2019, and
2020 using TMB. Since the total number of non-target fish
caught was estimated separately, there are stations for which
the sum of the number of target and non-target species caught
was >1 000 (six stations for 2017, three stations for 2018,
four stations for 2019, and three for 2020). These stations
were therefore dropped. A further two stations were dropped
in 2017 because fewer than 30 hooks were recorded, which
would make these stations unreliable. This resulted in a total
number of stations equal to 141, 150, 123, and 148 for each
respective year. As is done for the simulations, the maximiza-
tion of the likelihood was performed using the quasi-Newton
optimizer nlminb in R. Anonymized data alongside model
code is available online at github.com/RaphMcDo/MEMSpa-
Halibut.

Results

Simulation experiment

For Experiment 1, 499 fits successfully converged and 1 failed
to converge, while for Experiment 2, all 500 fits converged.
The distribution of parameter estimates (Figure 3) was centred
around the true values, implying no evidence of bias.

When both target and non-target species have relatively
high probability of capture as in Experiment 1 (set respec-
tively at 2×10−3 and 1×10−3), indices of abundance were

Figure 3. Histograms of parameter estimates from Experiment 1 in red and Experiment 2 in blue (vertical lines denote the true value for each
experiment).
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Figure 4. Histograms of percent differences between estimated relative indices of abundance [λT(si) and λNT(si)] and their true values (target species in
red, non-target species in blue) for Experiment 1 (left panel) and Experiment 2 (right panel). Outliers are not shown in the figure for visualization
purposes (<0.5% of the runs for Experiment 1 and about 2.8% for Experiment 2).

Table 2. Estimated parameters with corresponding standard error in parentheses for MEMSpa from 2017 to 2020.

Parameter 2017 2018 2019 2020

βT − 12.303 (0.253) − 11.917 (0.291) − 12.765 (0.415) − 12.341 (0.276)
βNT − 6.252 (0.185) − 6.208 (0.118) − 6.050 (0.144) − 6.297 (0.140)
pNT 0.8799 (0.0011) 0.8992 (0.0010) 0.9045 (0.0011) 0.9138 (0.0010)
φT 0.0308 (0.0108) 0.0840 (0.0174) 0.0641 (0.0161) 0.0611 (0.0147)
φNT 0.0870 (0.0123) 0.0628 (0.0092) 0.0569 (0.0104) 0.0870 (0.0117)
σ 2

T 4.485 (0.877) 3.557 (0.723) 6.936 (1.636) 3.780 (0.806)
σ 2

NT 1.518 (0.242) 0.969 (0.132) 1.451 (0.212) 0.867 (0.133)

very well estimated (Figure 4, left panel) with over 86% of
estimates within 25% of the true value. However, when the
target species had a much lower chance of capture as in Ex-
periment 2 (set at 1.88×10−5), the model estimates were less
precise (Figure 4, right panel), with a little under 50% of the
estimates within 25% of the real value for the target species.
This indicated that MEMSpa had a greater probability of be-
ing further away from the real value when the abundance of
the target species is low (distributed around 1.88×10−5 as in
Experiment 2) than high (distributed around 2×10−3 as in
Experiment 1), but that an overall mean index should still be
accurate as the indices were centred at the correct values. Fur-
thermore, this higher variability did not appear to impact the
estimation of parameters, spatial or otherwise (Figure 3).

Halibut survey

All four model fits (one for each year) successfully converged
with parameter estimates shown in Table 2.

The effective ranges for target species calculated from
the φT parameters (3φ) re-transformed to interpretable units
(Table 2) were about 31 km for 2017, 79 km for 2018, 60 km
for 2019, and 62 km in 2020. As these are decorrelation
ranges, they indicate how far apart two points need to be for
correlation to cease and hence are suggestive of the size of
hotspots for target species. Beyond these distances, the corre-
lation becomes negligible (<0.05). For non-target species, the
practical ranges were about 87, 59, 54, and 88 km between
2017 and 2020. The estimates of the other parameters were
generally similar across years, with the exception of σ 2

T , which
appeared to be higher in 2019 than the other years. The large

σ 2
T was most likely the result of the highest halibut catch in the

700–hook dataset for 2019 (104 halibuts) being more than
twice the highest catch in all other years.

The estimated relative abundance indices for Atlantic hal-
ibut tended to be larger in the shallow areas for 4X5YZ,
specifically in the 30–130 m depth stratum (Figure 5). How-
ever, the indices appeared to be higher in deeper areas for 4W
and slightly higher in the middle depths for 4V. A temporal
shift in depth strata with the highest abundance was seen in
area 3P, where there was no appreciable difference between
depth strata in 2017 and 2018, but the index dropped in the
middle depths in 2019 and 2020 (Figure 5). A similar tempo-
ral shift in the middle depths was also present in area 3NO,
although the highest index was always in the deepest stratum.

Looking at the overall modelled area spatially, there were
only a few recurring areas where halibut appeared to be rou-
tinely found at higher abundance in all 4 years (Figure 6): off
the south-western tip of Nova Scotia in NAFO division 4X,
near the edge of the 4W division south of central Nova Scotia,
and around the Laurentian Channel in the middle of the mod-
elled area going up to the Gulf of St. Lawrence (mostly in 3Ps).
Temporally, one could see a change in the eastern portion of
the area in 3O and 3N where very few halibut were caught in
2020 even if previous years sometimes saw a few good hauls.
For the non-target species (Figure 7), the largest abundances
were observed on the western edge of the survey area towards
the Gulf of Maine and the Bay of Fundy in 4X as well as ar-
eas near the Laurentian Channel in 3Ps and 3Pn. While these
hotspots did not perfectly overlap with the halibut hotspots,
they are very close to one another.
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Figure 5. Boxplots of relative abundance indices of target species [λT(si )] on log scale obtained using our spatial model for 2017, 2018, 2019, and 2020.
The indices are estimated at each survey station and classified by strata [NAFO Divisions: 4X5YZ, 4W, 4V, 3P, and 3NO; and depth strata: 1 (30–130 m), 2
(131–250 m), and 3 (251–750 m)]. Colours correspond to those in Figure 1.

Figure 6. Estimated relative abundance index for target species [λT(si)] on the log scale in all Dirichlet tiles between 2017 and 2020.

The estimated indices for the entire area from the MEMSpa
and MEM fits generally agreed on the patterns of change,
meaning both indicated similar trends from one year to an-
other (single exception being the non-target index in 2018;
Figure 8). MEMSpa always estimated the index at a higher
value than the non-spatial MEM. This behavior was caused by
two things. First, the inclusion of spatial effects in MEMSpa

actually reduced the expected index (for example, β t is
−12.303 in 2017 for MEMSpa but it is −10.882 in the same
year for the MEM) but allowed the model to better account
for a lot of the station-specific variability and have station-
specific indices, which could be significantly higher than the
aggregated index (see Figure 6). This was then combined
with our spatially weighted average approach to aggregation,
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Figure 7. Estimated relative abundance index for non-target species [λNT(si)] on the log scale in all Dirichlet tiles between 2017 and 2020.

Figure 8. Estimated abundance indices (λ̄T and λ̄NT for MEMSpa, λT and λNT for the MEM) for target and non-target species for the entirety of the
modelled area from fitting MEMSpa and MEM to data from 2017 to 2020. The error bars represent ±1 standard error (error bars are present in panel (b)
for the MEM; they are simply extremely small).

where the stations with higher indices tend to cover relatively
large areas and therefore were more heavily weighted than
with the MEM (see Figure 6).

Discussion

The creation of MEMSpa has led to the successful integra-
tion of previous MEM models accounting for hook competi-
tion with geostatistical approaches that can incorporate spa-
tial structure. The resulting station-level and overarching in-
dices along with their corresponding standard errors were bet-
ter able to capture the latent spatial patterns and improved the
resulting estimates when compared to non-spatial methods.

Results from fitting the spatial MEM demonstrated that
catch rates for Atlantic halibut were higher in shallow areas in
the southwest part of the survey area (relative to shallow ar-

eas on Southern Grand Banks) and along shelf edges through-
out the management unit (see Figures 5 and 6). These conclu-
sions were consistent with previous studies of Atlantic halibut
distribution from Fisheries and Oceans Canada research ves-
sel trawl surveys and commercial landings (den Heyer et al.,
2015a; French et al., 2017). Furthermore, Atlantic halibut
catch rates in the trawl surveys (Boudreau et al., 2017; French
et al., 2017) showed juvenile hotspots and preferred habitat
for Atlantic halibut on shallow banks in southwest Nova Sco-
tia (NAFO 4X and 4W, Strata 1) and along the shelf edge
throughout the management unit.

Our novel implementation harnessed advances in multi-
nomial modelling (Etienne et al., 2013), generalized linear
mixed modelling (GLMM) (Venables and Dichmont, 2004),
geostatiscal approaches (Thorson et al., 2015), and computa-
tional approaches (Kristensen et al., 2016). Our formulation
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accounted for hook competition in the standardization of the
CPUE in an Atlantic halibut longline survey while also provid-
ing an option to include set-specific covariates through the use
of a GLMM framework on the indices themselves. Further-
more, unlike previous formulations (Smith, 2016) that were
only fitted to a subset of hooks from each set at each station,
the product likelihood method made full use of all available
information at each longline station while appropriately prop-
agating uncertainties. From a spatial perspective, having two
spatial random fields in a model is not common. For our anal-
ysis, it was reasonable to include two separate spatial random
fields for λT and λNT since these describe potentially distinct
patterns in the distribution of target and non-target species.
Furthermore, these random fields allowed the model to incor-
porate the impact of potential differences and changes in ther-
mal regime, ecological communities, and other environmental
impacts without creating novel data requirements that are un-
available for many fisheries around the world (Costello et al.,
2012).

In addition to improving abundance indices for the entire
area, including geostatistical approaches allowed the user to
obtain much more useful information on the target species
for the purpose of management. As lower animal densities
have been shown to result in patchier distributions (Gaston
et al., 2000), the estimates of decorrelation ranges obtained
from MEMSpa can show changes in the patchiness of the hal-
ibut distribution over time. Additionally, our spatial model
can predict the indices at unsampled locations through the use
of kriging. This flexibility can be of value in situations where
surveys are incomplete (Webster et al., 2020), while also help-
ing the identification of both target species hotspots and by-
catch hotspots.

There was a great deal of similarity across years in param-
eter estimates. This indicates that, going forward, it may be
worthwhile building in the functionality to analyze multiple
years of data simultaneously (see Thorson et al., 2015; Mc-
Donald et al., 2021). Doing so would open up the possibility
of predicting indices of abundance in the future and therefore
potentially provide even richer scientific advice for the pur-
pose of management.

Not only is MEMSpa useful and highly applicable to this
Atlantic halibut fishery, but it can also be applied to other
longline surveys (e.g. Pacific halibut or Greenland halibut) as
it can be fit to any dataset with counts of target and non-target
catches and can also be informed by any subset of the hooks
that have hook condition data on presence of bait. While our
model is based on the assumption that empty-unbaited hooks
are caused by non-target species taking the bait and escap-
ing, it can be easily modified to incorporate the situation that
empty-unbaited hooks come from either target or non-target
species. Additionally, our approach makes it possible to fully
assess the impact of additional covariates (e.g. depth and tem-
perature) that may be of greater impact for other datasets.

Supplementary material

Supplementary material is available at the ICESJMS online
version of the manuscript.
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