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Abstract
Length–weight relationships (LWRs) are an essential component of fishery stock assessments. They are used to develop in-

dices of condition and to convert length data into estimates of biomass. Attempts to capture variability in underlying ecological
processes within statistical modeling frameworks for LWRs have typically relied on the inclusion of environmental variables.
Here, using a case study of sea scallop (Placopecten magellanicus), we demonstrate that introducing spatiotemporal random ef-
fects into generalized linear mixed models can improve LWRs. We compare models with and without potentially informative
environmental variables. We find that the explicit incorporation of spatiotemporal dependence structures reduces bias and
increases precision in the estimation of weight. The combination of both spatiotemporal effects and environmental variables
provided the best predictions in most years. Spatiotemporal random effects can provide a comprehensive means of improving
LWRs for various species, even when influential environmental variables are unavailable.

Key words: spatiotemporal model, environmental variables, generalized linear mixed model, allometric relationship, stock
assessment, sea scallop

Résumé
Les relations entre la longueur et la masse (RLM) constituent un élément essentiel des évaluations des stocks de pêche.

Elles sont utilisées pour établir des indices de condition et pour convertir des données de longueur en estimations de la
biomasse. Les tentatives visant à saisir la variabilité de processus écologiques sous-jacents dans des cadres de modélisation
statistique pour les RLM reposent typiquement sur l’inclusion de variables environnementales. En utilisant une étude de cas
du pétoncle géant Placopecten magellanicus, nous démontrons que l’introduction d’effets spatiotemporels aléatoires dans des
modèles linéaires mixtes généralisés peut améliorer les RLM. Nous comparons des modèles qui intègrent ou non des variables
environnementales potentiellement informatives. Nous constatons que l’incorporation explicite de structures de dépendance
spatiotemporelle réduit le biais et rehausse la précision de l’estimation de la masse. La combinaison d’effets spatiotemporels
et de variables environnementales produit les meilleures prédictions pour la plupart des années. Les effets spatiotemporels
aléatoires peuvent fournir une approche exhaustive pour améliorer les relations entre la longueur et la masse pour différentes
espèces, même si des variables environnementales influentes ne sont pas disponibles. [Traduit par la Rédaction]

Mots-clés : modèle spatiotemporel, variables environnementales, modèle linéaire mixte généralisé, relation allométrique,
évaluation des stocks, pétoncle géant

1. Introduction
In marine ecosystems, ecological processes are known to

vary in space and time; however, describing their complex
spatiotemporal patterns has historically proven challenging.
Attempts to account for spatiotemporal variability within
standard statistical modeling frameworks have largely been
undertaken using environmental variables and categorical
variables for time and space that are relatively coarse (Bolker
et al. 2009; Potts and Rose 2018). However, recent statistical
developments have focused instead on capturing spatiotem-
poral patterns through the introduction of random effects,

into modeling frameworks, most often resulting in mixed
effect models (Thorson and Minto 2014). Generalized linear
mixed models (GLMMs) are a popular statistical framework
for such purposes commonly used in ecological modeling
(Venables and Dichmont 2004; Bolker et al. 2009). GLMMs are
extensions of ordinary linear regression models; they include
both fixed and random effects (i.e., mixed effects models)
and allow for non-Gaussian distributions of the response vari-
able (i.e., generalized linear models). Traditional GLMMs typ-
ically employ spatially explicit covariates (defining regions,
zones, etc.) in an attempt to approximate spatial structures.
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Such approaches can be effective at explaining some variabil-
ity in the response variable in the absence of more complex
random-effect structures that explicitly model spatial char-
acteristics, which were historically difficult to construct and
incorporate.

The incorporation of spatiotemporal dependence struc-
tures within the framework of mixed effect models has
been made much easier recently by the development of
cutting-edge, highly efficient statistical tools, notably R-
INLA (Lindgren 2012) and TMB (Template Model Builder)
(Kristensen et al. 2016). Essentially, these tools have made it
possible to efficiently fit such models to complex spatiotem-
poral data in practice. Spatial and spatiotemporal models
implemented with these tools are quickly emerging in fish-
ery research as best practice for investigating important
ecological processes such as population density (Thorson
et al. 2015; Thorson 2019), by-catch (Cosandey-Godin et al.
2014), abundance (Cao et al. 2017; Cavieres and Nicolis 2018),
growth (Cahill et al. 2020), and stock dynamics (McDonald
et al. 2021). Results have confirmed that accounting for spa-
tiotemporal variability can reduce bias and uncertainty in
parameter estimates, while also providing unique insights
into fishery behavior, ecosystem functioning, and population
dynamics.

Given that the drivers of productivity are inherently spa-
tial, individuals sampled from locations in close proximity
are likely to exhibit more similar growth. This has been ob-
served for both mobile and sedentary species (Thouzeau et al.
1991; Smith et al. 2001; Smith and Rago 2004; Gerritsen and
McGrath 2007; Hart and Chute 2009; Thorson 2015; Adams
et al. 2018), although this geographic assumption may be less
pronounced for mobile species due to individual migration
and mixing. For sedentary species, local physical, chemical,
and biological processes can result in localized and predica-
ble differences in growth throughout the seascape (Thouzeau
et al. 1991; Smith et al. 2001; Smith and Rago 2004; Hart and
Chute 2009). As a result, covariates that are relatively easy
to obtain (e.g., depth) often serve as proxies for the complex
interaction of processes that drive spatiotemporal variabil-
ity. Unfortunately, understanding the influence of complex
spatiotemporal processes remains elusive when using sim-
ple proxies. This is especially true when other local sources
of environmental variation are not included in the model-
ing methods due to either a lack of knowledge of the pro-
cess or simply a lack of available data. The spatiotemporal
modeling framework can overcome these limitations by uti-
lizing the spatial autocorrelation found in the data itself to
provide more accurate parameter estimation and novel in-
sights into the patterns and processes underlying this vari-
ability (Thorson 2015; Hodgdon et al. 2020).

In sedentary species, spatiotemporal patterns in somatic
growth are often reflected in their condition, defined as the
relationship between individual length and weight, where
differences in length-to-weight relationships (LWRs) reflect
differences in the physiological state of the individuals at
given locations (Murphy et al. 1990). Since length data are
easier and faster to obtain in the field than data on weight,
sampling protocols often include extensive monitoring of
individual lengths, whereas only a subsample of individu-

als caught in the field is actually weighed (Kimmerer et al.
2005; Gerritsen and McGrath 2007; Hennen and Hart 2012).
LWRs developed from these subsampled data are then used to
convert between numbers, biomass, and catch (Froese 2006;
Gerritsen and McGrath 2007), with any uncertainty or bias
due to this conversion propagated into subsequent stock as-
sessment indicators, model inputs, and fishery management
advice.

Traditionally, spatiotemporal variability in LWRs is ac-
counted for using environmental variables, such as year, sea-
son, area, and depth (Lai and Helser 2004; Gerritsen and Mc-
Grath 2007; Sarro and Stokesbury 2009; Hennen and Hart
2012; Al Nahdi et al. 2016). Harnessing the latent spatiotem-
poral information in length–weight data may improve sub-
sequent LWR model performance. Our objective here is to
demonstrate how explicitly incorporating a spatiotemporal
component into a mixed effect model framework can im-
prove the prediction of LWRs compared to more traditional
GLMMs. We demonstrate this spatiotemporal approach with
a case study of the Bay of Fundy sea scallop (Placopecten mag-
ellanicus).

2. Methods
The generic GLMM formulation we propose for further de-

velopment of LWR models is as follows:

f (μ) = Xα + Zβ

w|μ ∼ D

β ∼ �

(1)

Here, w is the response variable, meat weight, and μ is the
predicted value of meat weight. f is a link function relating μ

to both fixed and random effects (Xα and Zβ). X and Z are de-
sign matrices from predictors such as shell height, etc.; α and
β are the fixed and random parameters, respectively, where
the random parameters are assumed to follow a generic dis-
tribution �. Finally, D denotes the response distribution for
w and must be a member of the exponential family of distri-
butions.

Fixed effects can include informative predictors such as
measurements of relevant environmental variables; random
effects are often used to model variations in parameters (e.g.,
β) that potentially arise from shared stochastic processes
(Thorson and Minto 2014). Traditionally, simple statistical dis-
tributions are often employed for explaining these variations
when such stochastic processes are abstruse and difficult to
model explicitly, e.g., Gaussian distribution for symmetric
dispersion. However, recent developments in spatial statistics
can allow for efficient incorporation of more complex struc-
tures in random effects for underlying spatial and temporal
processes (Lindgren 2012; Kristensen et al. 2016). Mixed ef-
fect models with random spatial and spatiotemporal effects
based on Gaussian Markov random fields (GMRFs) are charac-
terized by their explicit modeling of spatial autocorrelation
within the data and have the potential for improving ecologi-
cal modeling of interested quantities that historically have re-
lied on simple GLMMs. Herein, we denote models with spatial
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Fig. 1. Location of the scallop production area (SPA) 3 in the
Bay of Fundy, Canada. Base map sources from U.S. Geologi-
cal Survey and National Oceanic and Atmospheric National
Ocean Service, map projection WGS84 Web Mercator.

and spatiotemporal effects as spatiotemporal models (STMs)
to distinguish them from traditional GLMMs without such ef-
fects.

This section provides a data description for the case study,
a summary of exploratory and preliminary analyses for
LWRs, and the theoretical background for the four selected
models presented in this study: a GLMM, a GLMM with
environmental variables including depth and temperature
(GLMM-DT), an STM, and an STM with environmental vari-
ables (STM-DT). Performance of these models was assessed
in the case study and compared by a rigorous and objective-
oriented cross-validation procedure. Three additional model
formulations (a GLMM with depth, temperature, and area
effect, a spatial model with a static spatial effect, and a
spatial model with a static spatial effect, depth, and tem-
perature) were also evaluated and can be found in the
Appendix.

2.1. Data description
Fisheries and Oceans Canada conducts annual scallop sur-

veys in scallop production area (SPA) 3, which is a scallop
management area in the Bay of Fundy, Canada (Fig. 1). This
random-stratified survey occurs over a period of 7–8 days in
June each year and the number of tows per year has ranged
from 135 to 155 during the study period (2012–2018). At sea,
all scallops caught are measured for shell height to the near-
est millimeter and measurement error is negligible (< 1%).
However, due to resource limitations the meat weight is only
measured for approximately half of the tows (ranged from
60 to 66; see Fig. 2 for the annual survey tow locations where

the shell height and meat weight measurements were taken).
Scallops greater than 50 mm in shell height are sorted into
5 mm shell height size bins and up to three scallops per 5 mm
bin are retained for dissection. Shell heights (umbo to the
margin) are measured to the nearest millimeter and corre-
sponding meats have excess water removed and are weighed
to the nearest 0.1 g. The total number of individual scal-
lops sampled per year ranged from 1832 to 2151 during the
study period. Temperature is recorded for each tow using a
Vemco Minilog II temperature recorder attached to the sur-
vey gear. Although temperature is an in-situ measurement at
the time of the survey, the study area is located at the mouth
of the Bay of Fundy, which is a tidally dominated funnel-
shaped bay that experiences some of the world’s highest tides
(O’Reilly et al. 2004). The tidal currents strongly influence the
oceanographic conditions in this area and, this results in per-
sistent oceanographic differences across the area (Greenlaw
et al. 2010; Li et al. 2015). Temperature was therefore included
for evaluation as a potential candidate environmental vari-
able in subsequent analyses. Depth information is recorded
at sea for each tow; however, due to significant variation in
tides in the Bay of Fundy (O’Reilly et al. 2004; Shaw et al.
2012), standardized depths are obtained by spatial analysis of
the tow positions with a 50 m resolution DEM (Digital Eleva-
tion Model) standardized to mean water level. Further details
on the survey design and sampling protocols can be found in
Glass (2017).

2.2. Preliminary analysis
Evaluation of various model settings in a preliminary

analysis (https://github.com/Mar-scal/SPA3_Spatial_LWRs) in-
dicated that using a Gaussian distribution for the response
variable (meat weight) with a log-link function resulted in the
best model predictions and that the best random-effect struc-
ture included both a random slope and intercept. The vari-
ance inflation factor value was 2.15 for depth and tempera-
ture; given this value was <3 (Zuur et al. 2009), both depth and
temperature were retained as candidate environmental vari-
ables. As a result, four comparable models were presented in
this study and tested further: two using a traditional GLMM
framework and two using an STM framework. All models in-
corporated year as an additive fixed effect. The model formu-
lations were designed to evaluate the impact of incorporating
environmental variables (depth and temperature) as additive
fixed effects, and to evaluate the relative difference between
incorporating spatial heterogeneity using tow location as an
independent random effect in a GLMM framework, or via an
STM framework with spatial and spatiotemporal random ef-
fects for the year and tow location. In STMs, it is possible to
incorporate various assumptions of autodependence (or inde-
pendence) into any of the temporal, spatial, and spatiotem-
poral effects. The STM structures in the method below were
formulated to allow for the best relative comparison to the
GLMMs. Analyses were conducted in the statistical software
R v4.0.3 (R Core Team 2020) using the packages lme4 (Bates
et al. 2015), TMB (Kristensen et al. 2016), and INLA (Lindgren
et al. 2011). For reproducibility and for those interested in
application to other surveys and species, the datasets and
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Fig. 2. Spatial residuals (grams) for the four models in each year. Residuals were spatially aggregated and averaged over tows to
highlight remaining spatial patterns. Base map was made with Natural Earth, map projection WGS84 Web Mercator. [Colour
online]

scripts for the analyses performed in this study are publicly
accessible on GitHub (https://github.com/Mar-scal/SPA3_Spati
al_LWRs). The preliminary analyses that guided selection of
the four models presented in this study can be found in the
same GitHub repository; however, three models that may be
of additional interest are included in the Appendix.

2.3. Analytical models

2.3.1. Generalized linear mixed model (GLMM)

There are two levels of variation in the dataset as described,
the groups (i.e., the tows) and the individual observations (i.e.,
weights and heights) within a tow. The following GLMM is
considered, where tow location is included as a random ef-
fect to account for potential spatial and spatiotemporal vari-

ability in the parameters among tows:

log (μi ) = α0 (ti ) + α1log (hi ) + β0 (si, ti ) + β1 (si, ti ) log (hi )

wi ∼ N
(
μi, φ

2)

β0 (si, ti ) ∼ N
(
0, ε2

0

)

β1 (si, ti ) ∼ N
(
0, ε2

1

)

(2)

where wi and hi are the meat weight and shell height of the
i-th observation, respectively, and μi is the expected meat
weight. A log transformation of the shell height and a log-
link function of the meat weight are used, which amounts
to a power relationship between the two variables. α0(ti) are
fixed parameters and correspond to the year effect. β0 and
β1 are the random parameters relating to tow locations si;
however, since tow locations are chosen randomly in each
year, these two random parameters represent variation in
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both space and time (i.e., location si and year ti). In practice,
they are implemented with the categorical variable, tow ID.
The random effects and the response variable are assumed to
follow Gaussian distributions.

2.3.2. Generalized linear mixed model with
environmental variables (GLMM-DT)

Some mechanistic processes are believed to be major con-
tributors to spatial variation in meat weight–shell height rela-
tionships and in particular, measured variables such as depth
and temperature may contain information about these pro-
cesses. In order to assess the influence of the two environ-
mental variables, they are incorporated into the above GLMM
as auxiliary fixed effects to form a second GLMM, GLMM-DT,
as follows:

log (μi ) = α0 (ti ) + α1log (hi ) + α2di + α3ci + β0 (si, ti )

+β1 (si, ti ) log (hi )

wi ∼ N
(
μi, φ

2)

β0 (si, ti ) ∼ N
(
0, ε2

0

)

β1 (si, ti ) ∼ N
(
0, ε2

1

)

(3)

where di and ci are depth and temperature corresponding
to the i-th observation, respectively, and α2 and α3 are their
associated coefficients. Both environmental variables are in
situ measurements from the survey and are in fact tow-level
observations, as scallops from the same tow are considered
to share the same environmental conditions. The measure-
ments are log-transformed and normalized for numerical sta-
bility in model estimation and their variability is represented
in their respective linear coefficients.

2.3.3. Spatiotemporal model (STM)

To assess the effectiveness of a spatially explicit meat
weight–shell height model, an STM was designed assuming
the same allometric relationship between meat weight and
shell height with tow-level linear coefficients to capture spa-
tial, temporal, and spatiotemporal effects. The additive for-
mula facilitates the decomposition of multiple random ef-
fects. We consider these effects to reside in both the intercept
and slope (corresponding to shell height),

log (μi ) = [α0 (ti ) + β0 (si ) + β0 (si, ti )]

+ [α1 (ti ) + β1 (si ) + β1 (si, ti )] · log (hi )
wi ∼ N

(
μi, φ

2)
(4)

where wi and hi are the meat weight and shell height for the
i-th observation, respectively. μi is the expected meat weight.
α(ti) represent the temporal effect and are fixed parameters;
β(si) and β(si, ti) are the spatial and spatiotemporal random ef-
fects for the year ti and location si, respectively. Subindices 0
and 1 denote the linear intercept and slope, respectively. Pre-
diction for the meat weight is derived conditioning on these
random effects assuming a Gaussian distribution. The follow-
ing assumptions for these effects apply similarly to both the

intercept and slope, so the equations below apply to both β0

and β1 and are presented without subindices to reduce re-
dundancy.

The temporal effect, α(t), is assumed to be fixed so that the
annual mean is estimated independently. The annual survey
occurs over a period of 7–8 days in June each year. All scallops
within a survey are tagged with the same time index; there-
fore, the sea scallops sampled within the same year share a
common year effect.

For the spatial effect, β(s), we assume a Matérn GMRF where
spatial locations jointly follow a conditional multivariate nor-
mal distribution and the covariance between any two loca-
tions follows a distance-based de-correlation Matérn function
(Rue and Held 2005). The spatial effect β(s) is also assumed in-
variant of time,

β (si ) ∼ GMRF
(
0, �S)

�S
si,s j

= Matérn
[
d

(
si, s j

)
, θ S](5)

where �S is the covariance matrix whose elements describe
the pairwise covariances among sample locations, and θ S

are the parameters defining the random field, including the
smoothness, scale, and variance parameters. In practice, the
smoothness is specified so that the GMRF can be defined via a
sparse precision matrix; the scale describes the range of spa-
tial dependence and the precision relates to the variance and
covariance in the space–time matrix and the two parameters
are estimated. d(si, sj) is the Euclidean UTM distance (O’Keefe
1952) between the two tow locations converted from their
longitude and latitude recordings.

Similarly, the spatiotemporal effect, β(s, t), or the dynamic
spatial effect, is also assumed as a Matérn GMRF but fits to
each year as an independent realization,

β (si, ti ) ∼ GMRF
(
0, �ST (t )

)
,∀ti = t

�ST
si,s j

(t ) = Matérn
[
d

(
si, s j

)
, θ ST](6)

where t denotes the survey year and in this study t ∈ {2012–
2018}. The covariance matrices for each year are composed of
pairwise covariances between observation locations and are
assumed as different realizations from a shared latent field.

The random effects are structured to resemble measurable
environmental conditions, but may be more flexible and en-
compassing than specific environmental variables. For exam-
ple, the static spatial effect is likely related, but not limited
to depth, and the secondary spatiotemporal effect could be
informed by temperature.

2.3.4. Spatiotemporal model with environmental
variables (STM-DT)

An STM with environmental variables (STM-DT) is also con-
sidered, where depth and temperature are incorporated sim-
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ilar to the GLMM-DT,

log (μi ) = α0 (ti ) + α1 (ti ) log (hi ) + α2di + α3ci

+β0 (si ) + β0 (si, ti ) + [β1 (si ) + β1 (si, ti )] log (hi )

wi ∼ N
(
μi, φ

2)
(7)

Variables in the STM-DT are identically defined as in the STM
with an addition of the linear coefficients α2 and α3 corre-
sponding to depth and temperature, respectively. For the spa-
tial and spatiotemporal effects, the same GMRF structure is
used as described in 2.3.3.

While both STM and STM-DT fall into the category of gen-
eralized linear mixed effect models, they were characterized
by their structured spatial and spatiotemporal random ef-
fects and were denoted as STMs to distinguish them from the
GLMMs presented in this study.

2.4. Model comparison
10-fold cross-validation is used for model comparison and

to evaluate whether there is overfitting, which is likely to
occur in models with complex structures (containing a sub-
stantial number of parameters that are estimated with a lim-
ited amount of data). Cross-validation also assesses the re-
liability of the four models to predict “new” observations
(additional observations that are not included in the model
fitting phase) and is most suitable for model validation for
this purpose (Ding et al. 2018). Information criteria such as
AIC/BIC (Akaike Information Criterion and Bayesian Informa-
tion Criterion, respectively) are commonly used for model
comparison but for models with complicated random-effect
structures such as spatial models, the degrees of freedom
can be difficult to determine and the performance of in-
formation criteria may not be reliable (Anderson and Burn-
ham 2004; Bolker et al. 2009; Hastie et al. 2009; Lee and
Ghosh 2009). We also calculated AIC and BIC for the four se-
lected models; AIC and BIC were calculated from fitting the
models to the complete dataset and based on their respec-
tive log-likelihoods and numbers of fixed parameters. How-
ever, these were provided only as supplementary to the cross-
validation model comparison technique in the Appendix
(Table C1).

Since the meat weight is only collected for approximately
half of the tows, it must be predicted for tows where the meat
weight sampling did not occur. However, not accounting for
the spatial variation across the sampling domain can result
in prediction bias in the meat weight and, ultimately, sub-
sequent biomass estimates. For this reason, we stratified the
cross-validation on tow locations rather than individual ob-
servations so that prediction for each scallop excludes other
scallops within the same tow.

In 10-fold cross-validation, all tow locations in all years are
randomly partitioned into 10 groups. For each group (test
set), the model parameters are estimated using observations
within the other nine groups (training set), the trained model
is then used to predict on the test set, and residuals are cal-
culated (test residuals). This training–testing process is iter-
ated for all 10 groups so that predictions and residuals are
obtained for every observation. Test residuals are compared

across models as well as the residual variance. Partitioning
of the dataset is consistent across different models to ensure
results are comparable.

In the stratified cross-validation, since observations are ag-
gregated by spatial location (i.e., by tow) prior to partitioning,
their prediction residuals are in effect tow-level residuals or
“spatial residuals”. These residuals are an indication of “left-
over” spatial variation and patterns in them are indicative
of spatial bias in the model predictions. The tow-level resid-
uals for the meat weight of each observation are obtained
for the four models. Average residuals are calculated to as-
sess the scale of the residual spatial variation and to compare
prediction accuracy of the four models. The residual standard
deviations are also calculated to evaluate the precision of pre-
dictions and the extent of each model’s ability to explain the
spatial variability.

The four models were used to fit the complete dataset
and predict the yearly meat weight spatial distribution of a
standard commercial size scallop (100 mm shell height). The
GLMM can only predict spatial variation of the weight at tow
locations where there is sampling of both meat weight and
shell height; predictions at unsampled locations are based
solely on the fixed effect terms within the model. The GLMM-
DT predicts at locations that are sampled for depth and tem-
perature; given supplementary data on ocean bathymetry
and bottom temperature, it can predict unsampled loca-
tions but the spatial variation relies on the two covariates.
The STM has the ability to predict for any spatial location
within the region as this model estimates a latent field over
the study area and interpolates to unsampled locations via
spatial autocorrelation. The STM-DT has the ability to po-
tentially predict any spatial locations as well, but also re-
quires additional depth and temperature data. For the con-
venience of comparison of the models in this study, we only
generate predictions for the meat weight at tow locations
where detailed sampling of meat weight and shell height
occurs.

3. Results
Spatial patterns in tow-level residuals are observed for each

model (Fig. 2). GLMM has the strongest residual patterns with
positive residuals throughout St. Mary’s Bay (SMB) where this
model consistently underestimates meat weight; in contrast,
it overestimates meat weight outside of SMB further from
shore. For nearshore outside of SMB, GLMM tends to underes-
timate meat weight in 2012–2015, captures the observations
relatively well in 2016–2017, and slightly overestimates in
2018, implying a potential transition over time in the meat
weight–shell height relationship in this nearshore area that
differs from other areas. Compared to GLMM, GLMM-DT di-
minishes the residual patterns within SMB and the offshore
area but the inclusion of depth and temperatures leads to a
consistent overestimation for nearshore locations in 2016–
2018.

STM tends to underestimate meat weight in SMB and over-
estimate in the offshore areas, while capturing the nearshore
observations relatively well in most years. Notably, STM per-
forms the best among all models across the study area
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for year 2018, where the environmental variables adversely
impact the predictions of both GLMM-DT and STM-DT for
nearshore locations. The spatial patterns in tow-level residu-
als are similar between STM-DT and GLMM-DT. However, STM-
DT tends to have the smallest residuals of the four models. For
example, while STM-DT also underestimates weight in SMB in
2014–2017 the sizes of the residuals are the smallest of any
of the models.

Across all years, GLMM has the largest average residuals of
the four models, followed by STM, GLMM-DT, and then STM-
DT (Table 1). Of these four models, STM-DT has the smallest
average residuals and residual standard deviations in most
years. However, within-year comparisons demonstrate that
the relative performance of the models varies between years.
Although GLMM-DT has smaller overall residuals than STM
for the full study period, GLMM-DT residuals are higher than
STM in 2013, 2015, and 2018. Further, in 2018, STM outper-
forms the three other models.

The four models are fitted to all available data (see the Ap-
pendix for estimated parameters) and the fitted models are
used to predict the yearly meat weight of a standard com-
mercial size scallop (100 mm shell height) for each sampled
tow (Fig. 3). All models capture the relative spatial differences
in productivity across SPA 3 with higher meat weight for
the same-size scallop observed in SMB; lower meat weights
are observed outside SMB, and weight declines with distance
from shore. This variability in meat weight is substantial,
with meat weights ranging from approximately 5 to 20 g
for 100 mm shell height animals over distances of approx-
imately 40–60 km. The average predicted meat weight for
100 mm-shell height animals was calculated for each year
(Fig. 4). The STMs predicted slightly smaller meat weights
than GLMM and GLMM-DT when averaged across the spa-
tial domain in most years, except in 2014, when predicted
meat weights were similar among all four models. In addi-
tion, the STMs tended to predict more homogeneity across
space in meat weights than the GLMMs especially in 2017
and 2018 with smaller standard deviations (Fig. 4), possibly
related to increasingly homogenized ocean conditions in the
region in these years. On average across all years, the dif-
ference in meat weight estimates is largest between GLMM
and STM-DT, with STM-DT estimates being approximately 4%
smaller than the GLMM estimates (median predicted meat
weights for GLMM and STM-DT were 11.4 g and 11.0 g,
respectively).

4. Discussion
Increasingly, fishery assessment and management advice

are focused on including environmental drivers within mod-
eling frameworks to understand the influence of environ-
mental change on fish population dynamics. A great deal
of effort is often spent trying to relate measures of produc-
tivity to various environmental variables (Walters and Collie
1988; Myers 1998; Brander 2010; Baudron et al. 2014; Swain
and Benoît 2015). However, it is often the case that these re-
lationships are assumed correlative and are based on envi-
ronmental variables that are easily measured in the ecosys-
tem. Such variables are typically proxies for underlying pro-

cesses that may not be well understood. Further, these rela-
tionships tend to break down over time and often may not
explain a great deal of the variability in the productivity pa-
rameter of interest (Myers 1998). Here, we show that STMs
can provide accurate predictions even without the inclusion
of environmental variables, and potentially further improve
predictions when used in conjunction with informative envi-
ronmental variables.

Mixed effect models include both fixed and random effects
and are often employed when data can be reasonably clus-
tered or grouped (Zuur et al. 2009; Stroup 2012). Fisheries
data are often structured in such a way, where samples from
multiple individuals are taken at specific locations (e.g., tows)
throughout a sampling domain and the finest spatial infor-
mation on environmental variables is at the scale of the sam-
pling unit. Mixed effect models have been demonstrated to
provide more accurate out-of-sample predictions for LWRs
compared to fixed effects-only models (Lai and Helser 2004).
Nevertheless, a wealth of information in the original data is
often not utilized to its full extent. Although undoubtedly re-
lated to environmental variables, spatial and spatiotemporal
random effects can capture variability beyond what can be
attributed to (often coarse scale) environmental variables ap-
pearing additively in the GLMM. The GLMM-DT and STM both
improve the prediction of weight compared to the GLMM,
with the improvement in GLMM-DT due to the inclusion of
environmental information, while STM relies on the spatial
structure inherent in the data itself. Combining the advan-
tages of both influential covariates and spatial autocorrela-
tion, the STM-DT provides the best predictions in most years.
This suggests that incorporating such random effects is bene-
ficial both when environmental data are available and when
they are not.

Although both the incorporation of environmental vari-
ables and spatial modeling of autocorrelation reduced bias
and increased precision in the estimation of weight, the spa-
tial and spatiotemporal effects can offer increased flexibility
to capture underlying patterns in productivity. For example,
depth and the spatial random effects account for spatially
variable but temporally unchanging patterns observed in the
environment. The depth effect in GLMM-DT is the same irre-
spective of the actual location, whereas the spatial random
effects in the STMs can vary across the region and may con-
tain more information than depth alone. The spatiotemporal
random effects in the STMs are dynamic over time and be-
have similarly to the temperature effect but are again more
flexible, as their contribution can change over both space and
time. The inclusion of spatiotemporal effects explains a por-
tion of variance in the weight related to historical changes in
the spatial characteristics of the LWRs that improve within-
year predictions, but may not apply in terms of forecasting
into future years because the exact nature of this field is dif-
ficult to predict.

This modeling framework effectively decomposes the LWR
into a known predictable component that is consistent from
year to year, and a second dynamic component, both of which
could inform research into the mechanisms underlying the
observed patterns in productivity. In sea scallops, larger
meats are found at shallow water depths where temperature
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Table 1. A summary of cross-validated residuals for the four models: mean and standard
deviation for each year and all years (see the Appendix for a visualization of these cross-
validated residuals).

Year GLMM GLMM-DT STM STM-DT

2012 0.7418 (6.8661) 0.0895 (4.7415) 0.5484 (6.167) − 0.1197 (4.4737)

2013 2.2728 (6.5703) 0.5308 (4.7449) 0.4206 (4.748) − 0.1756 (4.0785)

2014 2.3850 (7.1551) 1.1008 (5.7618) 1.5247 (7.0436) 0.4069 (5.5615)

2015 1.3338 (7.1474) 0.6544 (5.2991) 0.5740 (6.4192) 0.1870 (5.1388)

2016 0.8354 (6.1352) 0.2605 (4.8229) 0.5858 (6.0367) 0.3267 (4.6395)

2017 − 0.4587 (6.4972) − 0.2957 (5.1969) 0.6304 (6.5844) 0.3137 (5.2215)

2018 − 1.1535 (4.5767) − 0.9354 (4.7299) 0.0352 (4.4021) − 0.5116 (4.765)

2012–2018 0.8828 (6.6001) 0.2175 (5.1013) 0.6266 (6.0063) 0.0607 (4.8776)

Fig. 3. Predicted meat weight in grams for a scallop of standard commercial shell height of 100 mm at sampled tow locations
in each year for the four models. Base map was made with Natural Earth, map projection WGS84 Web Mercator. [Colour online]

and food availability are often more favorable (MacDonald
and Thompson 1985, 1986; MacDonald et al. 1987; Schick
et al. 1992) and food ration, consisting of suspended detrital
material and phytoplankton, is a major factor in the regula-

tion of growth and production (Shumway 1987; Cranford and
Grant 1990; MacDonald et al. 2016). Although depth and tem-
perature were both influential variables, unexplained vari-
ability in the model residuals may be related to currently
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Fig. 4. Average predicted meat weight in grams (with one standard deviation in vertical bars) for a scallop of standard commer-
cial shell height of 100 mm for each year and across the spatial domain using sampled animals for the four models. [Colour
online]

unobserved conditions,1 such as variability in substrate (e.g.,
grain size) or habitat type (Kostylev et al. 2003; Brown et al.
2012). However, although the spatial distribution of substrate
may be relatively static, its influence on scallop growth is
likely modulated by temporally variable oceanographic con-
ditions (Kirby-Smith 1972; Wildish et al. 1987; Cahalan et al.
1989; Pilditch et al. 1997). In this species, the environmental
conditions during the winter of the current year and the pre-
vious year influence the size of the meat weight during the
summer (Liu et al. 2021). However, identifying lagged envi-
ronmental relationships is challenging as the dimensionality
increases quickly as additional lags are explored with multi-
ple covariates, and the risk of identifying transient and spu-
rious correlations increases following the increase of this di-
mensionality. The addition of spatiotemporal random effects
can explicitly identify how a physical quantity (e.g., meat
weight) varies both through time and space; these patterns
can then be used to identify candidate environmental vari-
ables that have the potential to explain the observed patterns.
Understanding these patterns will help inform testable hy-
potheses regarding the mechanisms driving the underlying
patterns and can be used to identify candidate environmen-
tal variables at appropriate temporal and spatial scales, with-
out having to undertake dubious high-dimensional correla-
tive data-mining analyses.

The inclusion of the spatial and spatiotemporal effects
within the GLMM enables a more intrinsic accounting of both

1 Further significance of the environmental variables and of the spa-
tial and spatiotemporal effects are demonstrated by the compari-
son of GLMMs, STMs, and the additional model formulations in the
Appendix.

spatial and temporal variability; the data inform how the
model varies both in time and space without the need of arti-
ficial categorizations such as pre-defined spatial areas coded
as factor levels (e.g., survey strata), as is often done within a
traditional GLMM framework (Thorson and Ward 2013). For
sedentary species, such as scallop, the growth of individuals
in close proximity to each other is expected to be strongly
correlated (Thouzeau et al. 1991; Lai and Helser 2004; Smith
and Rago 2004; Hart and Chute 2009; Sarro and Stokesbury
2009; Hennen and Hart 2012; Hodgdon et al. 2020) since their
physiological condition will reflect the integrated physiolog-
ical response to the history of environmental conditions at
their location. Here, we demonstrate that substantial spatial
variability occurs over relatively small spatial scales (10s km)
where meat weights are often four times greater for the same-
size scallop in SMB than in offshore areas and that the spa-
tial and temporal variability in the LWR is a natural feature of
the STM results. Fine-tuning of traditional GLMMs to improve
residual spatial patterns often includes further discretizing of
data (e.g., area effect via spatial blocking and using categori-
cal area variables) but this may not be effective when residual
patterns are not consistently defined over time (see Appendix
D for a supplementary analysis of a GLMM with fixed area ef-
fect). Compared to an area effect, the benefit of the STMs is
that no a priori knowledge of the spatial patterns is necessary
for them to be accurately captured.

As demonstrated in this case study, the patterns that spa-
tial and spatiotemporal random effects capture reflect un-
derlying ecosystem processes. Although the direct mechanis-
tic drivers of these patterns are often unknown, spatial and
spatiotemporal random effects can provide a comprehensive
means of improving LWRs, even when influential environ-
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mental variables are unavailable. The bank-wide meat weight
predictions from STM-DT tend to have less uncertainty than
the estimates from the GLMMs (cross-validated residual vari-
ations), likely due to its ability to better represent the un-
derlying spatial patterns in the data. The lower uncertainty
from STM-DT modeled meat weights can reduce uncertainty
in biomass estimates from these models, thus improving the
science advice provided to fishery managers. More broadly,
given the increased interest in incorporating spatiotemporal
heterogeneity into next-generation stock assessment (Punt
2019; Cadrin et al. 2020), the STMs developed herein can be
utilized to help advance the development of next-generation
stock assessment models. As identified in Cadrin et al. (2020),
accurate spatial modeling requires the correct specification
of major features of population dynamics, including growth;
further, these aspects should be resolved and inform spatially
structured stock assessment (Cadrin et al. 2020). Integrated
and spatiotemporal modeling frameworks for this stock have
recently been developed (McDonald et al. 2021, 2022). These
STMs can be directly integrated into these stock assessment
models with the associated uncertainties fully propagated
into the biomass estimates and incorporated into the result-
ing science advice.

Although the STMs offered improvements in capturing the
LWR across the stock, all models struggled to consistently
capture the LWR in SMB. In this study, the spatial dependence
was modeled based on an assumption of isotropic Matérn
GMRF, the theory and practice around which have been well
developed (Lindgren et al. 2011; Blangiardo et al. 2013; Auger-
Méthé et al. 2017). Further study should explore and iden-
tify other spatial, temporal, or spatiotemporal assumptions.
This could include the structure of autodependence both
in space and time, implementing anisotropy to account for
asymmetric de-correlation (Allard et al. 2016), testing alterna-
tive assumptions of the interaction between space and time
(Thorson 2019), or moving beyond GMRFs to better accom-
modate extreme observations with heavy-tailed distributions
(Anderson and Ward 2019). These refinements may better
capture observed patterns and lead to improved model pre-
diction and reduced uncertainty. In addition, the response
distribution in these LWR models used a Gaussian distribu-
tion for improved predictive performance, even though dis-
tributions such as gamma and lognormal are more immedi-
ate candidates for response variables that are constrained to
be positive. The advantage from a Gaussian distribution may
be related to its symmetric shape that allows for balanced bi-
directional prediction errors.

Finally, this case study demonstrates a development pro-
cess for upgrading existing statistical models to incorpo-
rate recent statistical methods that could be incorporated
into stock assessment frameworks. While statistical advance-
ments are relatively easily incorporated into ecological mod-
eling; fishery stock assessment modeling requires an addi-
tional focus on providing accurate and reliable predictions.
As such, implementation of novel techniques into existing
stock assessment frameworks often requires a more rigorous
review of the implications of the new technique and proper
model validation is required to justify additional complex-
ities. Complicated models can overfit data; as such, model

comparison or selection techniques in the model develop-
ment process should include their own consideration of suit-
ability in order to avoid false selection of models that in fact,
generate worse predictions (see Appendix C for alternative
model comparison techniques based on information crite-
ria). With a comprehensive assessment and comparison of
the four LWR models where improvements from incorpora-
tion of environmental variables and spatial effects were thor-
oughly validated, this study can also be used as a guidance
for model development.
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Fig. A1. A visualization of the summary of cross-validated residuals for the four models and all years (Table 1). The residual
means were summarized for each survey year with point-wise ranges for residual standard deviations and each color corre-
sponds to a model.

Appendix B: Parameter estimates for the
models

Table B1. Estimated year effect for the four models (standard
error in parenthesis).

Year GLMM GLMM-DT STM STM-DT

2012 2.67 (0.03) 2.52 (0.04) 2.70 (0.06) 2.48 (0.05)

2013 2.61 (0.03) 2.65 (0.03) 2.70 (0.06) 2.64 (0.04)

2014 2.60 (0.03) 2.76 (0.03) 2.63 (0.06) 2.80 (0.04)

2015 2.73 (0.03) 2.89 (0.03) 2.78 (0.06) 2.91 (0.04)

2016 2.54 (0.03) 2.50 (0.03) 2.54 (0.06) 2.47 (0.04)

2017 2.61 (0.03) 2.67 (0.03) 2.48 (0.06) 2.63 (0.04)

2018 2.62 (0.03) 2.58 (0.02) 2.54 (0.06) 2.56 (0.04)

Note: The year effect is included as a fixed effect on the intercept.

Table B2. Estimated linear coefficients with corresponding
standard errors and p values for the environmental variables
in GLMM-DT and STM-DT (eqs. 3 and 7).

GLMM-DT STM-DT

Variable Estimate
Std.

error p value Estimate
Std.

error p value

Depth − 0.074 0.0258 0.004 − 0.053 0.0236 0.024

Temperature 0.164 0.0336 <0.001 0.190 0.0307 <0.001

Table B3. A comparison of parameter estimates and standard
errors (in parenthesis) for the random effects in STM and STM-
DT (eqs. 4–7).

Description Parameter STM STM-DT

Spatial effect (intercept) Scale − 4.45 (6.12) − 3.09 (1.04)

Spatial effect (intercept) Precision 11.70 (8.89) 5.23 (1.52)

Spatial effect (slope) Scale 0.63 (0.30) 0.92 (0.24)

Spatial effect (slope) Precision − 0.49 (0.42) − 0.32 (0.38)

Spatiotemporal effect (intercept) Scale − 0.09 (0.27) − 0.56 (0.12)

Spatiotemporal effect (intercept) Precision 0.68 (0.35) 0.96 (0.13)

Spatiotemporal effect (slope) Scale − 1.51 (0.14) − 1.58 (0.24)

Spatiotemporal effect (slope) Precision 1.64 (0.16) 2.66 (0.29)

Note: The spatial and spatiotemporal effects are included on both the intercept and
slope, each consisting of a scale parameter and a precision parameter (inverse vari-
ance). The scale describes the range of spatial autocorrelation and the precision relates
to the space–time covariance matrix. Both parameters are log-transformed for the op-
timization process and hence, estimates reported are on the log scale.

Table B4. A comparison of variances for the random effects
in GLMM and GLMM-DT (eqs. 2 and 3).

Description Parameter GLMM GLMM-DT

Tow effect (intercept) ε2
0 0.85 0.39

Tow effect (slope) ε2
1 0.32 0.32

Table B5. A comparison of variances for the response distri-
butions in the four models (eqs. 2–7).

Description Parameter GLMM GLMM-DT STM STM-DT

Variance φ2 11.98 11.97 12.74 12.83
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Appendix C: Alternative model
comparison techniques

Table C1. AIC and BIC for the models GLMM, GLMM-DT,
STM, and STM-DT.

GLMM GLMM-DT STM STM-DT

logLik − 39 969.4 − 39 820.9 − 38 805.18 − 38 629.44

nf 12 14 23 25

AIC 79 962.9 79 669.9 77 656.36 77 308.88

BIC 80 053.4 79 775.5 77 829.95 77 497.57

Note: Calculation of AIC/BIC used log-likelihood (logLik) and number of
fixed parameters (nf).

The four models in this study, GLMM, GLMM-DT, STM, and
STM-DT, were fitted to the complete dataset and their respec-
tive AIC and BIC were calculated to provide an alternative
model comparison to the cross-validation in Section 3. The
calculation of AIC/BIC used log-likelihood and the number of
fixed parameters. Cross-validation was most suitable for this
study and was used as the main model comparison technique;
AIC and BIC are commonly used for comparing model fit to
“existing” data and typically do not focus on predicting “new”
data.

These model comparison techniques mostly provide simi-
lar results and indicated an advantage in STM-DT. However,
both AIC and BIC preferred STM over GLMM-DT, and this
may be a false advantage related to overfitting, since cross-
validation showed better out-of-sample predictions by GLMM-
DT. As a result, model comparison techniques should be
used cautiously like any statistical methods used in ecolog-
ical modeling.

Appendix D: GLMM with area effect
Discretized area effects are commonly used to improve

GLMMs when there are apparent spatial patterns in the resid-
uals. The STMs in this study were able to explain such pat-
terns with spatially autocorrelated structures, but are ar-
guably a big leap in model complexity; a more natural pro-
gression from a traditional GLMM would be to include more
explanatory variables for residual improvement. This sec-
tion presents another GLMM that includes a fixed, categori-
cal area effect to GLMM-DT and is termed as GLMM-DTA here-
after. The variable for this area effect was informed by the
cross-validated residual patterns from GLMM and GLMM-DT
in Fig. 2; the study area was partitioned into three subareas,
Saint Mary’s Bay (SMB), Inside, and Outside (see Fig. D1 for
sampled tow locations for each subarea).

The addition of an area predictor improved model fit in
terms of AIC and BIC: AIC for GLMM-DTA was 78 729.7 and
BIC was 78 850.4; AIC and BIC for GLMM-DT were 79 669.9 and

Fig. D1. Partitioning of sampled survey tow locations for an
area effect in the generalized linear mixed model. The study
area was partitioned into three subareas based on residual
patterns from GLMM-DT. Base map was made with Natural
Earth, map projection WGS84 Web Mercator.

79 775.5, respectively (Table C1). However, this is likely over-
fitting since cross-validated residuals from GLMM-DTA were
higher than both GLMM-DT and GLMM (Table D1; Fig. D2). The
random tow effect in both GLMMs was intended for potential
spatial variation and was more flexible than the three-level
fixed area effect; besides, even though there were spatial pat-
terns in the residuals, such patterns were not consistent over
time and hence a fixed area effect was not effective for ex-
planation of variance. Notwithstanding, GLMM-DTA did have
small improvements from GLMM-DT in years 2016–2018, in-
dicating a more consistent spatial pattern in the later years.
In conclusion, the fixed area effect in GLMM-DTA was not as
effective as the spatial effect in STM-DT. This is as expected,
since the spatially explicit structure was more adaptive and
flexible in capturing fine scale spatial variations than a sim-
ple area division.
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Table D1. Cross-validated residual means and standard deviations (in
parenthesis) for each year and all years for the three supplementary mod-
els, GLMM-DTA, SPM, and SPM-DT.

Year GLMM-DTA SPM SPM-DT

2012 0.8624 (5.3436) −0.8466 (6.6891) −0.0903 (4.7089)

2013 2.3423 (5.3165) 0.4876 (5.7284) 0.0784 (4.1801)

2014 1.7503 (5.8808) 1.4689 (6.7888) −0.0002 (5.6183)

2015 1.3014 (5.6935) 1.2796 (7.1216) 0.5395 (5.5028)

2016 1.0664 (4.9726) 0.4918 (6.316) 0.5685 (4.9803)

2017 −0.1641 (5.2418) 2.7364 (6.8121) 0.9501 (5.5547)

2018 −0.7664 (4.2438) 0.6100 (4.7137) 0.1325 (4.7045)

2012–2018 0.9336 (5.3669) 0.8729 (6.441) 0.2991 (5.0751)

Fig. D2. Spatial residuals (grams) for GLMM-DTA in each year. Residuals were spatially aggregated and averaged over tows to
highlight remaining spatial patterns. Base map was made with Natural Earth, map projection WGS84 Web Mercator.

Appendix E: Spatial models
Two supplementary spatial models with only the static spa-

tial effects were tested, i.e., STM without the spatiotemporal
component (denoted as SPM) and STM-DT without the spa-
tiotemporal component (denoted as SPM-DT). Cross-validated
residuals for SPM and SPM-DT are presented in Table D1 for

comparison with the STMs in this study (Table 1) and to il-
lustrate the necessity of the spatiotemporal components in
the STMs. Results indicated that such temporally varying spa-
tial effects were important for improving model predictions:
STM performed better than SPM and STM-DT performed bet-
ter than SPM-DT.
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