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1  |  INTRODUC TION

Many questions in ecology are directly related to the spatial distri-
bution of a species and to changes in their distribution and overall 
abundance over time. As a result many ecological data sources con-
sist of scientific research surveys which record the count, weight or 
presence/absence of a species along small spatial transects within 
the study area. These surveys are typically repeated at regular in-
tervals, commonly with transects being surveyed in the same month 
every year. Some surveys follow a repeated transect sampling design 

that sample the same spatial transects every year. Others use a 
stratified random sampling design which leads to different transects 
in the study area being sampled each year. Some concrete examples 
will highlight some of the characteristics of these datasets and some 
of their potential uses. 

•	 eBird: A real-time, online checklist program, eBird has revolution-
ized the way that the birding community reports and accesses 
information about birds. The database provides rich data with 
basic information on bird abundance and distribution at a variety 
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Abstract
1.	 Spatio-temporal datasets that are difficult to analyse are commonly derived from 

ecological surveys. There are software packages available to analyse these data-
sets, but many of them require advanced coding skills. There is a growing need 
for easy-to-use packages that researchers can use to analyse common ecological 
datasets.

2.	 We develop a particular generalized linear mixed model framework for spatio-
temporal point-referenced data that is flexible enough to accommodate data 
from most ecological surveys while being structured enough to facilitate analyses 
without advanced coding. Our implementation in the starve package uses a com-
putationally efficient version of a nearest-neighbour Gaussian process enabling 
analysis of relatively large datasets.

3.	 A tutorial analysis of a Carolina wren survey presents a recommended workflow 
for analyses while showcasing the capabilities of the package.

4.	 Our model and package are tools that can easily be added to researchers' routine 
to help make sense of data from ecological surveys. We emphasize the ability 
of our model to create fine-scale spatio-temporal predictions which can then be 
used to visualize and identify important trends in species distributions.
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of spatial and temporal scales. If we consider Nova Scotia, Canada 
there are about 25,000 checklists provided by about 600 citizen-
science observers on a yearly basis with about 350 species re-
ported annually. Given the huge amount of data collected in this 
database, tools that provide quick and easy to understand visual-
izations of the data would help ecologists make full use of efforts 
of the citizen scientists.

•	 Disease Mapping: Some epidemiology datasets have the same 
characteristics as ecological research surveys (Giorgi et al., 2018). 
However many disease prevalence datasets must comply with 
privacy regulations, and thus the data must either be analysed in-
house or reported as summaries over larger areas. If the data are 
analysed in-house then the research team either needs access to 
easy-to-use to software to help analyse their datasets, or employ 
resident statisticians that have the expertise to analyse the data 
from scratch and also have the necessary clearance to actually 
view the data (which is not always easy to do!).

•	 Fisheries Science: The original motivating example for the starve 
package introduced here is the analysis of fisheries data in Atlantic 
Canada, with a biology Master's student using the starve package 
to lead the data analysis (Jubinville et al., 2021). In that research 
we used surveys following the geographically stratified random 
sampling design to create predictions of the spatial distribution 
for both at-risk skate species and commercially valuable target 
species such as cod and haddock. We then used these predictions 
to identify areas of the ocean where fishing vessels trying to catch 
the commercially valuable species had more risk of catching the 
at-risk skate species as a byproduct of the fishing process. If in-
cluded as part of a fisheries management plan these results could 
help direct fishing effort to target areas with a relatively high 
abundance of the target species but with a low risk of bycatch. 
The privacy issues mentioned above for epidemiological datasets 
can also apply to fisheries science when using data collected from 
commercial fishing vessels.

Statistical models for these surveys typically fall under the name 
of ‘species distribution models’, where one of the main goals is to 
produce a predicted map of the spatial distribution of the species. 
Other goals for species distribution models include identifying im-
portant environmental factors that influence species abundance, or 
estimating the interaction between different species. See Robinson 
et al.  (2017) for a review of species distribution modelling in the 
context of fisheries, and for a review of species distribution mod-
els in a broader ecological context including a discussion of the 
statistical concepts that underlie most of these models. Repeated 
transect designs are much easier to analyse because they can be 
formulated as multivariate time series models, and associated spa-
tially explicit models applicable to this design have a relatively long 
history in the statistical literature (Eynon & Switzer, 1983; Goodall 
& Mardia, 1994). The geographically stratified random sampling de-
signs have traditionally been modelled on aggregate by discarding 
the exact spatial coordinates but modelling each strata in its own 
independent analysis, creating a pseudo-spatial analysis. Models 

that keep the entirety of the spatial information have only started 
to appear recently in the ecology literature (Berger et al.,  2017; 
Cosandey-Godin et al., 2014). In addition, recent applied interest in 
analysing large spatial or spatio-temporal datasets has led to the-
oretical innovations that make these models computationally trac-
table for wide use, with a comparative study for these innovations 
given in (Heaton et al., 2018).

Alongside the introduction of these statistical models has come 
the development of software packages, making the models read-
ily available to applied researchers. Perhaps the most widely used 
package for spatial ecology is R-INLA (Lindgren & Rue, 2015) which 
implements the so called stochastic partial differential equation ap-
proach for Gaussian random fields (Lindgren et al., 2011). Another 
popular package in spatial ecology is Template Model Builder, or 
TMB (Kristensen et al., 2016), which takes advantage of the Laplace 
approximation and automatic differentiation for fast optimization 
of a user-coded likelihood function. Both INLA and TMB are quite 
flexible but require the user to spend a significant amount of time 
learning how to code the model or likelihood function.

In addition to those two general-purpose packages are a suite 
of more specialized R packages that are easy to use in specific do-
mains. A few examples include LatticeKrig (Nychka et al.,  2016) 
for using purely spatial data to create fine-scale predictions and 
SpatioTemporal (Lindström et al., 2013) for fitting Gaussian spatio-
temporal processes using basis functions. Ecology-centric packages 
that support spatial analyses include Hmsc (Tikhonov et al., 2020) 
for estimating multi-species community data and the VAST pack-
age (Thorson & Barnett,  2017) which is tailored towards fisheries 
research and supports spatio-temporal data. What is missing from 
this suite is a package that (1) supports computationally efficient 
spatio-temporal analysis and predictions for the data types en-
countered in ecological surveys, in particular counts, weights and 
presence/absence data, (2) provides a simple interface to support 
wide use of the model and a streamlined workflow and (3) natively 
uses the spatial data formats provided by R's rich spatial data eco-
system (see the CRAN Task View on Analysis of Spatial Data; Bivand 
& Nowosad,  2022). VAST fits most of these criteria, however, it 
does not natively use spatial data formats and the strong emphasis 
it places on fisheries-specific models may limit its attractiveness to 
researchers not in fisheries.

To fill this niche we have developed the starve package for the 
Spatio-Temporal Analysis of Research surVEy data. It fits our three 
criteria by (1) using TMB to implement a new spatio-temporal hi-
erarchical model that incorporates recent research into computa-
tionally efficient spatial statistical modelling, (2) performing the 
most common analysis tasks (model fitting, simulations and pre-
dicting) using only three main functions whose syntax resembles 
that of typical calls to glm and predict functions familiar from intro-
ductory R courses and (3) directly accepts spatial data from the sf 
package and outputs the spatial data formats provided by the sf, 
raster and stars packages. We first introduce the basic statistical 
model implemented by the package leaving most of the details to 
technical appendices. Then we work through an example analysis 
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of a Carolina wren survey that demonstrates the workflow of the 
starve package.

2  |  MODELLING FR AME WORK

The model developed for the starve package is a hierarchical model 
with levels of the hierarchy that partition the model into logical com-
ponents based on which source of variability they account for. There 
are four levels in the hierarchy: the ‘temporal’ level models the global 
change of the species distribution from year to year, the ‘spatio-
temporal’ level models the spatio-temporal variability in the species 
distribution on top of the global change provided by the ‘temporal’ 
level, the ‘linear’ level adds the effect of any covariates on top of 
the spatio-temporal distribution provided by the ‘spatio-temporal’ 
level, and the ‘response’ level converts the ‘linear’ level to the scale 
of the data and accounts for any leftover variability not accounted 
for otherwise.

The ‘linear’ and ‘response’ levels can be written in the standard 
generalized linear mixed model framework:

where Yi is the response variable, f�
(
yi;�i

)
 is a response distribution 

with parameters � and mean �i, g−1 is an inverse link function, Xi is the 
ith row of a design matrix for fixed effects/covariates with regres-
sion coefficients �, and Zi is the ith row of a design matrix for spatio-
temporal random effects w.

The innovation provided in the starve package is in modelling the 
random effects w, which we do in the ‘temporal’ and ‘spatio-temporal’ 
levels of the hierarchy. Most spatial and spatio-temporal models are 
based on Gaussian random fields. Ours is no different so we briefly 
describe them. A Gaussian random field is a generalization of a multi-
variate Gaussian distribution used to model, among other things, vari-
ables that change with location such as the presence or absence of a 
species throughout a geographic area. They are described by a mean 
function �(s) that gives the expected spatial distribution of the vari-
able, and a covariance function C

(
s1, s2

)
 that encodes Tobler's first 

law of geography where “everything is related to everything else, but 
near things are more related than distant things” (Tobler, 1970). An in-
troduction to Gaussian process for time series, where they are easier 
to visualize and understand, is given by (Roberts et al., 2013).

The main problem with Gaussian processes is that working with 
them requires the inversion of large covariance matrices, which can 
be computationally prohibitive for the size of most modern datasets. 
Many changes and approximations to Gaussian processes to make 
them computationally feasible have been proposed in the litera-
ture (the stochastic partial differential equation approach used by 
INLA is one of them). The model implemented in the starve package 
uses a modification called the nearest-neighbour Gaussian process 
(Datta et al., 2016). The idea behind the nearest-neighbour Gaussian 

process is that ‘everything is related to everything else, but near 
things are more related than distant things so it's probably OK to for-
get about the distant things so that the models run much faster’. A 
graphical description of how nearest-neighbour Gaussian processes 
work is given in Figure 1.

We further adapted the nearest-neighbour Gaussian process to 
use in the ‘spatio-temporal’ level of our model. We choose a set 
of locations for the random effects that we will model every year, 
which we call the persistent graph nodes (see Appendix S1). The 
persistent graph nodes help incorporate the global change from the 
‘temporal’ level of the model into the ‘spatio-temporal’ level. These 
nodes do not need to be the same as the data locations though it 
usually makes sense to use all of or a subset of the data locations. 
If there are any data locations not used, then we model those lo-
cations only for the years that have observations at that location.

The ‘temporal’ level of the hierarchy represents a second set of 
random effects, one for each year, which are modelled as an AR(1) 
time series. The values of these random effects are used in the mean 
function for the ‘spatio-temporal’ level of the hierarchy to ensure 
that each individual location also follows an AR(1) time series with 
the same properties as the one in the ‘temporal’ level.

3  |  AN E X AMPLE ANALYSIS

Included in the starve package is a relatively simple survey dataset 
containing the number of sightings of Carolina wren Thryothorus lu-
dovicianus recorded once a year along spatial transects in Missouri, 
U.S.A. taken from the package STRbook, which in turn was modi-
fied from (Pardieck et al., 2017). We will use these data to produce a 
smooth map of the wren's spatial distribution during the years cov-
ered by the dataset, and forecast their spatial distribution a short 
time ahead into the future. This analysis is meant to demonstrate 
the use of the starve package by working through the often un-
reported typical steps—from model fitting and checking to predic-
tions and interpretation. We also highlight some of the surrounding 
R packages that a typical analysis might use. The produced map 
could then be used to identify shifts in spatial distribution and rela-
tive abundance over time, and can be used to set expectations for 
how the distribution of the species could look like in the near future.

The Carolina wren dataset is stored as point data using the ‘sim-
ple features’ open standard for spatial vector data as implemented 
in the R package sf (Pebesma, 2018). This is a common and straight-
forward spatial data format that is supported by many R packages, 
packages in other languages, and in GIS programs. We could not find 
the coordinate reference system used for these data, so for demon-
strative purposes we assume it is WGS84. The dataset has 783 ob-
servations across 21 years, ranging from 1994 to 2014. The same 68 
locations are sampled every year, however, there are some missing 
transects which are not included in the dataset. Without these miss-
ing transects there is a median 36 observations per year, with as 
few as 26 and as many as 45 in a single year. The data are mapped 
in Figure 4.

Yi|�i ∼ f�
(
yi;�i

)
,

�i|w = g−1
(
Xi� + Ziw

)
,
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3.1  |  Creating and fitting a model object with the 
strv_prepare function

Before fitting a model there are a few data preprocessing steps that 
are run, such as creating the graph used in the nearest-neighbour 
Gaussian process and creating a model object that holds the model 
parameters and spatio-temporal random effects. These preprocess-
ing steps are all performed automatically as part of the strv_prepare 
function. The very first step in analysing the wren dataset is to use 
this function to create the model object describing the model formula, 
the dataset we want to analyse, and the response distribution for the 
data. Our model formula needs to specify that the survey count is the 
response variable and that the year of the survey is the time index. 
The spatial coordinates for each observation point are automatically 
detected from the supplied data. Since we are analysing counts we will 
use a Poisson distribution with a log link function for our initial model. 

set.seed(30795) 
bird_fit<- strv_prepare( 

cnt ~ time(year), 
bird_survey, 
distribution ="poisson", 
fit =TRUE 

 )

The first argument to the strv_prepare function is the model for-
mula. The variable on the left-hand side gives the column name of 
the response variable. The right-hand side of the formula can tell 
the model which covariates, if any, to use in the analysis. While our 
dataset does not have any covariates we can use, if we wanted to 
include the linear effect of an elevation covariate and a tempera-
ture covariate we could use familiar R formula syntax, for example, 
cnt ~ elev + temp + time(year). The right-hand side is also used to tell 
the model which variable should be used for the time index by en-
closing the name of that variable in the time(…) special function. The 
right-hand side of the formula can be used to specify other model 
components such as sample sizes for binomial or tweedie response 
distributions, for setting the spatial covariance function, or for using 
more complicated forms for covariate effects. The full range of use 
for the model formula is described in the R documentation for the 
strv_prepare function.

The second argument is the dataset we want to use. This data-
set must be a sf data.frame with point geometries, and must have 
any variables named in the model formula. The spatial information 
is automatically detected and used from the geometry column of 
the data.frame, so it does not need to be specified in the model 
formula.

The distribution argument tells the model which distribution 
should be used for the response variable, and chooses a default link 

F I G U R E  1  Graphical model representation of the steps for computing the likelihood of a nearest-neighbour Gaussian process using k = 3 
nearest neighbours. (a) There are seven observed locations, with the value of each observation given by the colour of each circle. (b) Order 
the observed locations. Observations that are close in space should be close together in the ordering. In this example we put the locations in 
increasing order from left to right. (c) Find the joint multivariate normal distribution for the first k = 3 locations implied by the mean function 
and covariance function. (d) Compute the conditional distribution of the fourth location given its k = 3 nearest neighbours that came before 
it in the ordering, in this case locations 1, 2 and 3. (e) Compute the conditional distribution of the fifth location given its k = 3 nearest 
neighbours that came before it in the ordering, in this case locations 2, 3 and 4. (f) Continue with the conditional distributions for each of 
the remaining locations: in this example the conditional distribution of location 6 given locations 3, 4 and 5; and the conditional distribution 
of location 7 given locations 3, 5 and 6. (g) We want to predict the value of the spatial field at a new unobserved location. (h) The predictive 
distribution of the new location is the conditional distribution of that location given the k = 3 nearest observed locations, regardless of 
where those locations fall in the ordering, in this case locations 3, 4 and 5.
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function depending on the response distribution. If a link function 
besides the default is wanted, you can override the default by using 
the link argument to the function. For our analysis we will use the 
default log link function.

The strv_prepare function also accepts arguments used to 
control how the nearest-neighbour graph is constructed. By de-
fault the persistent graph nodes are taken to be the unique loca-
tions present in the dataset, but a different set of node locations 
can be used by supplying a second sf data.frame with point geom-
etries to the nodes argument. The main reason to use a different 
set of node locations is to use a smaller set of locations in order to 
decrease the computation time needed to fit the model, but this 
comes at the cost of using coarser approximations in describing 
how the spatio-temporal random effects evolve from one time to 
the next. You can also set the number of neighbours used by giving 
an integer to the n_neighbours argument, which defaults to 10. 
Smaller values for the number of neighbours will speed up compu-
tation time at the cost of using a more aggressive approximation, 
but the decrease in accuracy may not be significant (see Figure 2; 
Table 2).

The fit = TRUE argument tells the package that we want to fit 
the model after creating the model object. If this is the case then 
the starting values for the parameter estimates will be set to some 
default values. Sometimes the starting values will need to be chosen 
carefully in which case you can use fit = FALSE, modify the parame-
ter values in the resulting model object to change the starting values, 
and then call the strv_fit function to fit the model. Details on how to 
do this are given in the package documentation.

The output of the strv_prepare function is a model object with 
all of the preprocessing steps done, and if fit = TRUE the param-
eter and random effect values held in the model object will be 
those estimated via maximum likelihood. The model object looks 
like this: 

bird_fit  
## A starve model object  
##  
## Model formula: cnt ~ time(year)  
## Response distribution: poisson  
## Link function: log  

F I G U R E  2  Predicted response mean (left) and standard error (right) using different numbers of nearest neighbours—n = 3 (top), n = 10 
(middle), n = 30 (bottom)—in a starve model. The predictions are made for a 20 × 20 grid in the spatial extent of the Carolina wren data in the 
years 2013 and 2014. The predicted means and standard errors when using n = 10 are essentially identical to the predictions when n = 30, 
with any difference in the predictions small enough that the rasters are identical after applying the colour breaks. The predicted means and 
standard errors when using n = 3 are slightly different from either n = 10 or n = 30, although the differences are small enough that at quick 
glance they look the same. This suggests that it is feasible to use a small number of neighbours to drastically decrease computation time and 
memory usage (Table 2) while not losing much predictive accuracy.
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## Optimizer message: relative convergence (4)  
##  
## Data is a simple feature collection with 783 features  
## CRS: WGS 84  
## Bounding times: 1994 2014  
## Bounding box:
##	 xmin	 ymin	 xmax	 ymax
## -95.23445	 36.11935	 -89.24779	 40.47128

Printing the object gives a brief description of the model includ-
ing the model formula, response distribution, link function, optimizer 
message and a summary of the data. The convergence message is a 
diagnostic message from the optimizer used to find the maximum 
likelihood estimates of the parameters and random effects. Here the 
message is ‘relative convergence’, so we are confident that we have 
found a local maximum of the log-likelihood function. If the message 
does not indicate ‘relative convergence’ then a few strategies can be 
tried such as choosing different starting values or holding the spatial 
range parameter fixed at a somewhat large value. Diagnosing prob-
lematic convergence messages is in general a difficult task so some 
experimentation may be necessary to find the cause of such problems.

The parameter estimates for the different model components 
can be viewed through accessor functions such as time_parameters 
and space_parameters, for example: 

space_parameters(bird_fit)  
##	 $cnt 
## 			   par		      se	       fixed  
##	 sd	   0.05273397	   0.005281752	    FALSE  
## 	 range	 60.48205683	 15.760156240	    FALSE  
##	 nu	   0.50000000	   0.000000000	     TRUE

The par column gives the parameter estimate for that parameter, 
the se column gives the standard error for the parameter estimate, 
and the fixed column determines if that parameter was held fixed at 
the given parameter value when fitting the model. After checking the 
optimizer message for successful convergence and inspecting the 
model parameters, the model fit should be checked to see if there is 
any leftover variation or structure in the data that the model did not 
account for.

3.2  |  Checking the model fit with the  
strv_simulate function

With ecological count data it is important to check for over- or 
under-dispersion of the data relative to the fitted model. While 
over- or under-dispersion can be caused by any number of model 
mis-specifications, the easiest one to check is for mis-specification 
of the response distribution. We use the strv_simulate function in 
conjunction with the DHARMa package, which uses simulations 
to construct a parametric bootstrap estimator of the cumulative 
distribution function (CDF) for each data point (Hartig, 2020). The 

bootstrapped CDFs can then be used to calculate quantile residuals 
for the data, such that if the model is correct then the residuals will 
be uniformly distributed on the interval [0,1].

We will compare the wren dataset to one simulated set of ob-
servations each from a model with a Poisson response distribution, 
an over-dispersed negative binomial response distribution, and an 
under-dispersed Conway–Maxwell–Poisson response distribution. 
We then simulate 100 sets of observations from the fitted Poisson 
model to construct the bootstrap CDF. Quantile residuals for the 
Carolina wren dataset and each of the different response distri-
butions are computed using this bootstrap CDF. Through this pro-
cedure we have four sets of residuals: one set where we know the 
model is correct (Poisson simulation), one set where we know the 
data are over-dispersed relative to the model (negative binomial sim-
ulation), one set where we know the data are under-dispersed rel-
ative to the model (Conway–Maxwell–Poisson simulation), and the 
final set of residuals coming from the real dataset. We then compare 
the residuals from the Carolina wren dataset to the residuals coming 
from the simulated datasets to determine if the data exhibit under- 
or over-dispersion relative to the fitted Poisson model. To ensure 
we are checking only the response distribution we simulate new ob-
servations conditional on the fitted random effects and parameters, 
so that all of the simulated datasets share the same spatio-temporal 
pattern as the Carolina wren dataset.

The Conway–Maxwell–Poisson distribution can be seen as a 
generalized version of the Poisson distribution that can exhibit both 
under- and over-dispersion and has been used in a variety of ap-
plications (Sellers et al., 2012). The Conway–Maxwell–Poisson dis-
tribution is under-dispersed when the dispersion parameter is less 
than 1, over-dispersed when greater than 1 and becomes a Poisson 
distribution when equal to 1.

We will only show the code to simulate the Poisson realization, 
since the code for simulating from the other realizations is identical 
after changing the response distribution to their respective values. 

pois_sim<- strv_simulate( 
bird_fit, 
conditional = TRUE 

 ) 
pois_sim  
## A starve model object  
##  
## Model formula: cnt ~ time(year)  
## Response distribution: poisson  
## Link function: log  
## Optimizer message: Simulated realization from model  
##  
## Data is a simple feature collection with 783 features  
## CRS: WGS 84  
## Bounding times: 1994 2014  
## Bounding box:
##	 xmin	 ymin	 xmax	 ymax
## -95.23445	 36.11935	 -89.24779	 40.47128
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The first argument to strv_simulate is a starve model object. A new 
set of random effects and data will be simulated using the parameter 
values held in the model object, whether defined by the user or the es-
timates from a fitted model. We want to use the same spatio-temporal 
random effects for each of our simulations, so we use the argument 
conditional = TRUE to keep the random effects held in the given model 
object and only simulate a new dataset conditional on those random 
effects. The standard errors of the parameter values are also set to NA 
to indicate that the parameter values are not estimates from data. 

# Simulate 100 new datasets and combine the new simulated observations  
# into a matrix where each column is a different simulation.  
#  
# These will be used to create the bootstrap CDF  
pois_CDF<-do.call( 

cbind, 
mclapply( 

seq(100), 
function(i) { 

sim<-strv_simulate( 
bird_fit, 
conditional =TRUE 

 ) 
return(dat(sim)$cnt) 

}, 
mc.cores =8 

 ) 
 ) 
# Compute the quantile residuals for the wren  
# dataset relative to the fitted Poisson model  
library(DHARMa)  
bird_dharma<- createDHARMa(  
simulated = pois_CDF,  
observed = dat(bird_fit)$cnt,  
integer = TRUE  
 )

The residual plot (Figure 3) suggests that the Carolina wren data 
exhibit under-dispersion relative to the Poisson model. To test the 
magnitude of the effect we refit the data using a Conway–Maxwell–
Poisson distribution to more formally check if the under-dispersion 
suggested by the residual analysis is significant. To avoid repeating 
the preprocessing steps we create a copy of our original fitted model, 
change the response distribution to the Conway–Maxwell–Poisson 
distribution, then run the strv_fit function to estimate the parameters.

# Copy the existing model  
bird_compois<-bird_fit  
# Set the new response distribution  
response_distribution(bird_compois)<-"compois"  
# Fit the model. `silent = TRUE' suppresses the optimizer tracing  
bird_compois<-strv_fit(  
bird_compois,  
silent =TRUE  

 )  
# Print the convergence message  
convergence(bird_compois)  
## [1] "relative convergence (4)"  
space_parameters(bird_compois)  
## $cnt  
##	    par	             se	             fixed
## sd 	 0.0456067	 0.006577758	 FALSE
## range	 70.0321382	 22.241994976	 FALSE
## nu	 0.5000000	 0.000000000	 TRUE
# Print the estimated parameters for the  
# Conway-Maxwell-Poisson distribution  
response_parameters(bird_compois)  
## $cnt  
## 	 par	        se 	        fixed
## dispersion 1.222485        0.1594049       FALSE

F I G U R E  3  Q–Q plot comparing the residual patterns of the 
Carolina wren dataset to the residual patterns of simulated datasets 
with a known Poisson distribution or known under- or over-
dispersion relative to a Poisson distribution. The under-dispersed 
residuals come a data simulated from a Conway–Maxwell–Poisson 
distribution with dispersion parameter equal to 0.2, the over-
dispersed residuals from a negative binomial distribution with 
over-dispersion parameter equal to 4. The simulated datasets share 
the same spatio-temporal random effects as the Carolina wren 
dataset to isolate the effects of the response distribution. The 
Carolina wren residuals resembles the shape the under-dispersed 
Conway–Maxwell–Poisson residuals with both starting above the 
line for the Poisson residuals, crossing the Poisson line when the 
expected is roughly 0.6, and then ending below the line for the 
Poisson residuals. However, the amount of under-dispersion in the 
wren dataset is not as extreme as in the simulated data since the 
residuals are in between those of the Poisson simulations and the 
Conway–Maxwell–Poisson simulations.
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The Conway–Maxwell–Poisson model also successfully converged. 
While the estimated dispersion parameter surprisingly is in the range 
indicating over-dispersion, the standard error is large enough that the 
approximate 95% confidence interval = (0.910, 1.535) contains values 
covering under-dispersion, over-dispersion and the Poisson distribu-
tion. We attribute the discrepancy between the Q–Q plot and the pa-
rameter estimate to the combination of two things: first that if there is 
any under- or over-dispersion of the data relative to the Poisson model 
then the magnitude of it is too small to be estimated from the data, 
and second that the change in response distribution brought with it 
a change in estimates of the spatial parameters and spatio-temporal 
random effects. More generally, this speaks to the difficulty of model 
validation for spatio-temporal generalized linear mixed models and 
that more research needs to be done to understand it.

We will continue our analysis using the original Poisson model, 
although in practice we might perform more model validation steps 
or proceed with both models and check that the resulting predic-
tions agree. The complete table of estimated model parameters for 
the Poisson model is given in Table 1.

3.3  |  Predicting at unobserved locations/times 
with the strv_predict function

The final step in our analysis is to use the fitted model to produce a 
map of fine-scale predictions at unobserved locations and to forecast 
into the immediate future. We use the strv_predict function with the 
fitted Poisson model to predict the mean intensity, which should be 

roughly proportional to species abundance, throughout the state of 
Missouri in the years spanned by the dataset (1994–2014) and fore-
casts up to 4 years ahead (2015–2018). We want a smooth map so 
we first create a template raster to tell where predictions should be 
made. We chose the resolution of the raster based on the rough spa-
tial resolution of the data, but a lower resolution raster could be used 
to decrease computation time at the cost of possibly smoothing over 
any small-scale spatial variability in the data. To save a bit of compu-
tation time we mask the template raster so that values of the raster 
are NA outside of Missouri state lines, which tells the strv_predict 
function to skip these raster cells. The boundary of Missouri was ob-
tained from the rnaturalearth package (South, 2017). 

F I G U R E  4  Map of observed counts 
for the Carolina wren dataset collected 
in Missouri. Each point represents the 
number of observed birds counted in a 
survey transect at that location. Some 
general trends can be gleaned from this 
map notably that most of the population 
resides in the southern part of the state, 
and the large and sudden decline of the 
population in 2001 followed by a slow 
recovery. More fine-scale trends are 
harder to identify from the point data, 
even when the same transect locations 
are used every year like they are here.

TA B L E  1  Parameter estimates and standard errors for Poisson 
model fitted to the Carolina wren dataset. Direct interpretation 
of the temporal and spatial parameter estimates may not be 
very meaningful. A better way to interpret the fitted model is 
to interpret the random effect and response mean predictions 
directly, for example using prediction maps like Figures 5 and 6. 
If the model had included any covariate effects or if there were 
parameters in the response distribution, then those parameter 
estimates could be interpreted directly

Estimate Standard error

(log) global mean � 1.772 0.493

AR(1) correlation � 0.905 0.020

temporal std. dev. � 0.283 0.059

spatial std. dev. � 0.053 0.005

spatial range � 60.482 15.760
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The strv_predict function then takes the fitted model, the tem-
plate raster and the vector of prediction years and outputs the pre-
dictions produced at the midpoint of every raster cell every year. 
Predictions can also be made for specific locations and times by sup-
plying a sf data.frame containing a row for each specific (location, 
time) point. The output of strv_predict is a more general version of 
a raster called a data cube which allows the inclusion of a time co-
ordinate, and is implemented as a stars object in the stars package 
(Pebesma, 2022). The predictions include a layer for the point pre-
dictions and standard error of the spatio-temporal random effects 
(w and w_se), the response mean after including any covariates but 
before applying the link function (linear and linear_se), and the re-
sponse mean on the scale of the observations after applying the 
link function (response and response_se). If there are any covariates 
used to fit the model then they will also need to be given to the 
strv_predict function.

We give the predictions for the response mean predictions and 
standard errors directly to the tmap package (Tennekes, 2018), a 
general-purpose mapping package that can use the same sf data.
frames, rasters and stars objects that the starve package uses. 
Using the tmap package for exploratory purposes can take just 
a few lines of code which we show below to create the maps of 
the original count data and the predictions. The tmap package also 
gives the user the option to customize many aspects of the map to 
make higher quality and more visually appealing maps, if desired. 

library(tmap)  
missouri_tm<- tm_shape(missouri, is.master =TRUE) + tm_borders()  
count_tm<- tm_shape(bird_survey) + 

tm_dots(col ="cnt", title ="Count", size =0.7) + 
tm_facets(by ="year", free.coords =FALSE) 

intensity_tm<- tm_shape(bird_stars["response"]) + tm_raster(title 

missouri<- subset(  
    ne_states(iso_a2 ="US", returnclass ="sf"),  
        name =="Missouri",  
        select ="name"  
 )  
st_crs(missouri)<- 4326  
raster_to_pred<- rasterize(  
    missouri,  
    raster(missouri, nrow =20, ncol =20),  
    getCover =TRUE  
 )  
raster_to_pred[raster_to_pred ==0]<- NA  
  
bird_stars<- strv_predict(  
    bird_fit,  
    raster_to_pred,  
    time =1994:2018  
 )  
bird_stars  
## stars object with 4 dimensions and 6 attributes  
## attribute(s):  
## 		        Min.	        1st Qu.	    Median	          Mean	       3rd Qu.	           Max.		   NAs
## w	 -0.3844453	 1.1268977	 1.672641	 1.6203511	 2.1046658	   3.412355 	 3275
## w_se	 0.2012790	 0.3486235	 0.404807	 0.4519355	 0.5079299	   0.998019 	 3275
## linear 	 -0.3844453 	 1.1268977 	 1.672641 	 1.6203511 	 2.1046658 	   3.412355                3275
## linear_se 	  0.2012790 	 0.3486235 	 0.404807 	 0.4519355 	 0.5079299 	   0.998019                3275
## response 	  0.6808282 	 3.0860679 	 5.326215 	 6.1858578 	 8.2043600 	 30.336599                3275
## response_se 	  0.3595204 	 1.4481210 	 2.304867 	 2.7891404 	 3.5704265 	 15.233438                3275
## dimension(s): 
##	 from	  to	     offset	          delta	 ref		  sys	   point	 values	 x/y 
## x	       1	 20	 -95.773	  0.332708	 WGS	  84	 FALSE	 NULL	   [x] 
## y	       1	 20	 40.6188	 -0.231631	 WGS	  84	 FALSE	 NULL	   [y] 
## year	       1	 25	      1994	                 1		  NA	 NA	     1994,...,2018 
## variable	       1	 1	         NA	             NA		  NA	 NA			       cnt
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="Intensity")  
stderr_tm<- tm_shape(bird_stars["response_se"]) + tm_raster(title 
="Std. Error")  
  
legend_tm<- tm_layout( 

legend.outside.size =0.15, 
panel.label.size =1.4 

 )  
  
count_map<- count_tm + missouri_tm + legend_tm  
intensity_map<- intensity_tm + missouri_tm + legend_tm  
stderr_map<- stderr_tm + missouri_tm + legend_tm

The maps of predicted intensity and the predictions standard 
errors are shown in Figures 5 and 6 respectively. The spatial distri-
bution of the Carolina wren throughout the years covered by the 
survey is evident in these predictions. The wren is limited to the 
southern half of the state with a distinct population centre in the 
Ozarks in the southwest corner of the state and another near the 

Mississippi River in the southeast corner of the state. Maps of the 
predictions are a valuable visualization tool either for exploratory 
data analysis or for helping to inform management or conservation 
decisions where scientists need to communicate clearly with nonsci-
entist decision makers.

4  |  DISCUSSION

We end with a discussion of some of the current limitations of the 
starve package, a comparison with the INLA package, and directions 
for future research and extensions that we plan on adding to the 
model and package.

4.1  |  Limitations

Currently the main limitation of the starve package is that it does 
not have some of the features and modelling options that older 

F I G U R E  5  Model-based predictions of mean intensity of Carolina wren counts during the survey years (1994–2014) and forecasted 
into the future (2015–2018). The standard errors (Figure 6) for these predictions give important context regarding the certainty of the 
predictions, and any insights gained from the predictions need to take into account the uncertainty around the point predictions. The raster 
predictions should be roughly proportional to the local population abundance and thus give a clear depiction of the spatial distribution 
exhibited by the wren population. This visualization of the data aided by the model is less cluttered than the map of the observed counts 
themselves (Figure 4) and shifts in the wren distribution can be more quickly identified. In addition, the predictions provided by the model 
show more subtle shifts than can be easily seen in the observed data. For example, the emergence of the population centre in the southwest 
corner of the state from 1994 to 2000 and the range expansion when comparing the peak population sizes in 2000 to 2009 are immediately 
obvious from the raster predictions but not clear from the map of observed counts.
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and more mature packages have. For example (Bakka et al., 2019) 
added a barrier model to the INLA package which can account 
for obstacles in the landscape that prevent animals from moving 
across the barrier. The VAST package can analyse compositional 
data which can arise in fisheries surveys when interested in the 
abundance of fish in each age class, and is a more complicated 
type of response variable than counts or weights. While these 
features and others like them fit into the theoretical framework 
of the model, incorporating them into the package while adhering 
to the design philosophy of being simple and easy-to-use can be 
challenging.

Other limitations of the starve package are the trade-offs made 
in order to make the interface as simple as it is. Most of the details of 
fitting the model are completely hidden from the user so if things go 
wrong in model fitting—false convergence, nonsensical parameter 
estimates, etc—it can be difficult for the user to experiment and di-
agnose what is causing the problem. The options to change starting 

values for the parameter estimates, hold parameters fixed at cer-
tain values, and to easily change the spatial covariance function, re-
sponse distribution, etc. helps mitigate this issue by giving the user 
access to the typical first steps in diagnosing problems in the model 
fitting procedure. That the details of model fitting are hidden from 
the user also means that it is hard if not impossible to tweak the 
optimization procedure. For example the package does not support 
(nor has plans to support) Bayesian estimation of parameters and 
random effects, and is limited to maximum likelihood inference.

It can be difficult to customize the model to specific datasets if 
the model implemented in the package is not adequate for the data-
set. Although the starve package is open source and was designed 
from the start to make model extensions easy to add, you would still 
need advanced coding skills to add these extensions yourself. Many 
of the fisheries-specific equations implemented in VAST, for exam-
ple, are not yet implemented in starve which currently limits its use 
for fisheries science.

F I G U R E  6  Model-based standard errors for predicted mean intensity of Carolina wren counts during the survey years (1994–2014) and 
forecasted into the future (2015–2018). These standard errors represent the uncertainty inherent in extrapolating trends in the data to 
predict at unobserved locations and times. Since the survey locations provide good spatial coverage of the state in all years (see Figure 4), 
the prediction standard errors are low in all areas throughout the duration of the survey. There are some years that have more missing 
data than other years which causes the uncertainty at the missing locations to be higher than normal. The uncertainty in the forecast years 
suggest that model predictions are unlikely to be accurate more than 1 or 2 years past the end of the survey, although the model is confident 
that unless some unforeseen shift in the underlying environment occurs the wren population will still be located in the southern half of the 
state.
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4.2  |  Comparison with INLA

We expect that most ecologists interested in spatio-temporal 
models for their survey data have at least thought of using the 
INLA package for their analyses so we briefly compare starve 
to INLA . Each package uses a different method for making 
spatio-temporal analysis computationally feasible. INLA works 
by using a mesh to approximate a Gaussian random field with 
a Gauss–Markov random field whose likelihood can be ef-
ficiently computed by directly modelling the precision matrix 
(the inverse of the covariance matrix) instead of the covari-
ance matrix. This approximation works because of a connec-
tion between the Gaussian random field and the Gauss–Markov 
random field provided by a particular stochastic partial differ-
ential equation (Lindgren et al.,  2011). starve works by using 
a directed acyclic graph to replace the single large covariance 
matrix of a Gaussian random field with a large number of very 
small covariance matrices. starve was also purpose-built for 
spatio-temporal data, whereas INLA was built for purely spatial 
data with support for spatio-temporal models coming from a 
more general feature for grouping data. This allows the starve 
package to optimize its computations in the spatio-temporal 
setting, such as caching covariance matrix computations from 
one year to the next.

We compared the computational performances of starve, INLA 
and a naïve spatio-temporal model that uses the full covariance ma-
trix for a separable spatio-temporal covariance function that rep-
resents how a novice user of TMB might proceed. The model we 
created in INLA is roughly equivalent to the model implemented in 
starve, using an AR(1) time structure and a Matérn spatial structure, 
although we must mention that we are inexperienced INLA users 
and there may be ways to tweak the model settings to improve 
performance. The metrics we use are the amount of time needed 
for all data preprocessing and model fitting for the Carolina wren 
dataset, the time needed to use the fitted model to predict 2 years 
of a 20 × 20 raster, and an estimate of the total amount of RAM 
needed by R to use these packages in this analysis. Results are given 
in Table 2 with starve (n = 10 neighbours) needing about 25% of 
the time that INLA (parallel) needed to preprocess data and fit the 
model, the same amount of time that INLA needed to create predic-
tions, and roughly the same amount of RAM than INLA needed. The 
naïve model took 29 times the amount of time that starve did to fit 
the model, and the memory usage for this naïve model meant that 
predictions for more than a handful of locations caused R to crash.

In addition to comparing favourably to INLA in terms of computa-
tional performance the workflow for starve is more straightforward 
than for INLA, and the amount of specialist knowledge needed to use 
starve is less than that needed for INLA. An excerpt of the code used 
to create the INLA model just mentioned is given in Figure 7, which 
shows the relative complexity of the INLA syntax compared to the 
starve syntax shown in Section 3. In addition, INLA relies on the user 
to define sensible prior distributions and to create and choose a good 
mesh, which requires an appreciation of the approximation method 

used to make INLA efficient. The starve package uses sensible de-
fault behaviours so that the user does not need to know the details 
of the approximation method, but can still change the behaviour of 
the model if desired. However, INLA is a much more general-purpose 
package than starve. If taken the time to learn, INLA can fit much 
more complex and tailored models than starve.

4.3  |  Future directions

Many surveys collect data on more than one variable: for example they 
could collect data for multiple species or they might divide the data 
collected for a single species by their age classes. Adding support for 
more than one response variable and accounting for dependence be-
tween these variables is an important next step in the development of 
the model and package. We are also planning on adapting a version of 
the package to fisheries data which would include adding a number of 
smaller extensions to the model, such as adding a catch equation and 
a cohort ageing equation for age-structured models. This would make 

TA B L E  2  Computation time and memory usage when fitting 
the Carolina wren dataset and creating predictions for 2 years 
on a 20 × 20 raster, for implementations of roughly equivalent 
models using different packages and package settings. The 
fitting time covers all data preprocessing steps, including the 
mesh construction (INLA) and graph construction (starve), and 
parameter estimation, and similarly for the prediction time. 
The memory usage refers to the peak RAM usage at any point 
when running the R script for model fitting and predictions 
using that particular model. The naïve spatial model uses a 
Gaussian process likelihood with a 783 × 783 covariance matrix 
using a separable spatio-temporal covariance function, and 
is implemented in TMB as an example of what a novice user 
might create themselves. Predictions using the naïve model 
quickly ran out of memory, crashing a laptop with 16GB of RAM 
when trying to predict anything more than 1 year of a 6 × 6 grid 
without computing standard errors. The mesh for INLA used 
113 nodes, and the graph nodes for starve used the 68 data 
locations. The starve package outperformed the INLA package 
when fitting a model with the default settings for the starve 
package (n = 10) taking roughly 25% of the time that the default 
settings for the INLA package (parallel, 8 cores) took. Both 
packages performed roughly the same for prediction time and 
memory usage. The computation time and memory usage for 
both packages are dependent on the size of the mesh (INLA) or 
graph (starve, either through more nodes or more neighbours 
per node)

Fitting 
time (s)

Prediction 
time (s)

Memory 
usage (GB)

Naïve spatio-temporal 131.1 — —

INLA (nonparallel) 26.1 7.0 0.18

INLA (parallel) 19.7 3.0 0.66

starve (n = 30) 11.2 17.2 2.7

starve (n = 10) 4.5 3.3 0.55

starve (n = 3) 3.8 1.7 0.24
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the starve package more directly comparable with VAST, although the 
two packages would use different modelling philosophies and it does 
not hurt to have more modelling options available to the research com-
munity. Other changes to the package that are less immediate on our 
list of future development include adding options for more complex 
temporal structures in addition to the current AR(1) structure, add-
ing options for spatial covariance functions besides Matérn functions, 
and adding support for a barrier model which could be accomplished 
through clever creation of the nearest-neighbour graph for the nearest-
neighbour Gaussian process. In addition to extending the model, more 
research needs to be done in creating a formal set of procedures for 
model validation, and more research needs to be done to understand 
the trade-offs for different choices of nearest-neighbour graphs.
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