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Abstract
1.	 Fine-scale tracking with passive acoustic telemetry can yield great insights into 

the movement ecology of aquatic animals. To predict fine-scale positions of 
tagged animals in continuous space from spatially-discrete detection data, state-
space modelling through the R package YAPS provides a promising alternative to 
frequently used positioning algorithms. However, YAPS cannot currently classify 
multiple kinds of movement that may be used as proxies for individual behav-
iours of study animals (behavioural states), an endeavour that is of increasing 
interest to movement ecologists.

2.	 We advance YAPS by incorporating the functionality to predict behavioural 
states by using an iterative maximization framework. Our model, which we 
call YAMS, occurs in continuous time and therefore we adapt current hidden 
Markov model (HMM) machinery to accommodate this while remaining within a 
likelihood framework that provides rapid fitting. We test our model using simu-
lations and approximately 6 days’ worth of Northern pike data from Hald Lake, 
Denmark.

3.	 YAMS is shown to produce accurate parameter estimates and random effect 
predictions when model results were compared to simulated data, with behav-
ioural state accuracies of 0.94 and 0.79 for two- and three-state models, respec-
tively, and location state root mean squared errors of 1.8 m for both models. In 
addition, the behavioural states are shown to reflect varying speeds of the pike, 
yielding a highly interpretable classification.

4.	 This research has the potential to be broadly applicable to both ecologists inter-
ested in identifying fine-scale space use and behavioural states from acoustic 
telemetry data, as well as to statisticians who may wish to use standard HMM 
machinery to fit continuous-time HMMs to animal movement data.

K E Y W O R D S
YAMS, YAPS, acoustic telemetry, hidden Markov model, state-space model, ideasOTN, Ocean 
Tracking Network, European Tracking Network
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1  |  INTRODUC TION

Telemetry is a staple technology used to track aquatic animals and 
infer how movement relates to physiology, life history, oceano-
graphic and environmental constraints and anthropogenic actions 
(Hays et al., 2016; Hussey et al., 2015; Lennox et al., 2017). Acoustic 
telemetry has been instrumental for monitoring the movements of 
several taxonomic groups including teleost fishes, elasmobranchs, 
and crustaceans (Hussey et al.,  2015; Lennox et al.,  2017). With 
acoustic telemetry, we can track both large scale movements of in-
dividuals over extensive periods of time (years) and across oceans 
(McAuley et al., 2017), as well as fine-scale, high resolution move-
ments restricted to small study areas (Cote et al., 2019).

Acoustic telemetry is a two-part system wherein receivers record 
ID codes that are transmitted from tags typically either surgically im-
planted or externally attached to the study animals. A transmission 
can only be recorded by a receiver if it originates within the receiv-
er’s detection range. When a receiver array is designed such that de-
tection ranges overlap (i.e. when receivers are spaced approximately 
20–500 m apart; Roy et al., 2014; Trancart et al., 2020, and Figure 1 
of Binder et al., 2017) and transmissions can be detected at multiple 
receivers, algorithms based on the differences among arrival times 
of a single transmission at multiple receivers can be used to calcu-
late positions of the tagged animals on a spatially-continuous scale 
(e.g. Baktoft et al., 2017; Espinoza et al., 2011; Trancart et al., 2020). 
Positioning algorithms are often closed source (but see Trancart 
et al., 2020), expensive if carried out by the manufacturer, and the 

output can contain large amounts of error (Baktoft et al., 2017; Roy 
et al., 2014).

A recently developed alternative is the R package Yet Another 
Positioning Solver, or YAPS (Baktoft et al., 2017). This open source 
software fits a hierarchical (state-space) model with two levels to 
detection data: a measurement process that captures the variabil-
ity in transmission arrival times relative to their expected arrival 
times, and an unobserved movement process that assumes the un-
derlying track follows a Wiener process (Baktoft et al., 2017). For 
model fitting, YAPS utilizes the R package Template Model Builder 
(TMB; Kristensen et al.,  2016), a highly effective framework for 
fitting hierarchical models to animal movement data (Albertsen 
et al.,  2015; Auger-Méthé et al.,  2017; Jonsen et al.,  2019). By 
accounting for stochasticity in both the measurement and move-
ment processes, YAPS achieves greater precision in the location 
predictions compared to classic time-difference-of-arrival meth-
ods (Baktoft et al., 2017).

State-space models (SSMs), including YAPS, have become a pop-
ular tool in ecology (Auger-Méthé et al.,  2021), and have proven 
particularly useful for predicting true locations from noisy move-
ment data (e.g. Auger-Méthé et al.,  2017; Johnson et al.,  2008; 
Jonsen et al., 2005; McClintock et al., 2012; Patterson et al., 2008; 
Pedersen et al.,  2008). Hidden Markov models (HMMs) have also 
seen significant parallel development, as they can classify multiple 
discrete states influencing the movement process, and these can 
be inferred to reflect animal behaviour (Auger-Méthé et al., 2021; 
McClintock et al., 2020). Behavioural states can be readily predicted 

F I G U R E  1  Hald Lake, Denmark, with black dots indicating receiver locations. Inset plot shows the location of Hald Lake within Denmark 
(shaded pink area)
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from data sampled at regular temporal intervals via discrete-time 
HMMs (Michelot et al.,  2016; Zucchini et al.,  2016). However, 
most aquatic research can only record movements at opportunis-
tic (irregularly sampled) times. Irregular sampling, if incorporated 
into movement models, has often been integrated into the move-
ment process through the use of differential equations (e.g. Johnson 
et al., 2008), or into the measurement process via linear interpola-
tion (e.g. Jonsen et al., 2005; McClintock et al., 2012). Fewer studies 
incorporate it directly into the behavioural process (but see Parton 
& Blackwell,  2017; Michelot & Blackwell,  2019). When it is incor-
porated, standard computational machinery for HMMs typically 
cannot be used because the movement of an animal no longer de-
pends only on the current behavioural state, but can depend on 
one or more past states as well; this is called the snapshot principle 
(Patterson et al., 2017). However, rigorous testing of deviations from 
the snapshot principle with respect to animal movement has not 
been documented.

A few methods exist for predicting both behavioural states and 
location states within a single statistical model (Jonsen et al., 2005; 
McClintock et al.,  2012; Pedersen et al.,  2008), which we call 
switching hierarchical models (SHMs). These efforts have tradi-
tionally focused on developing methods for satellite telemetry, and 
few methods exist specifically for acoustic telemetry detections. 
One exception is that of Dorazio and Price (2019), who developed a 
one-dimensional Bayesian SHM for linear movement within a river. 
In the two-dimensional case, HMMs have been directly fitted to 
positional data (e.g. Whoriskey et al.,  2017), and to location pre-
dictions from SSM-filtered positional data (e.g. Cote et al., 2020). 
These methods typically require multiple separate modelling steps, 
for example, a positioning algorithm to obtain an animal path, fol-
lowed by filtering, and finally an HMM to obtain behavioural states. 
A methodology that can simultaneously predict behavioural and 
location states directly from acoustic detections would provide 
a more unified statistical solution where uncertainty around the 
model parameters and state predictions is accounted for within a 
single framework. This should allow the computation of reliable 
confidence and prediction intervals for quantities of interest, as 
well as other statistical tools like likelihood ratio statistics to com-
pare nested models. Such a methodology is currently unavailable.

Our research begins to fill this gap by advancing the YAPS model 
to additionally predict behavioural states. Because positions are 
sampled in continuous time, we employ a continuous-time Markov 
chain to model the behavioural state evolution. For model fitting, 
we follow the iterative framework outlined in Whoriskey  (2021), 
which takes advantage of maximum likelihood theory in both the 
HMM and SSM paradigms to efficiently and accurately fit SHMs to 
animal movement data. We relax the snapshot assumption such that 
we can adapt standard HMM computational tactics and use simu-
lations to evaluate the accuracy of our implementation. Model ef-
ficacy is demonstrated by fitting both two- and three-state models 
to approximately six days' worth of acoustic detections collected on 
a female carnivorous fish, the northern pike Esox lucius, throughout 
Hald Lake, Denmark.

2  |  MATERIAL S AND METHODS

In accordance with Baktoft et al.  (2017), we name our behavioural 
YAPS methodology ‘Yet Another hidden Markov model Solver’, or 
YAMS for short. YAMS has three goals: (a) predict a spatially- and 
temporally-continuous path from a series of spatially-discrete animal 
detections measured with error; (b) predict the evolution of behav-
ioural states; and (c) accurately estimate the parameters governing 
the animal movement and detection processes.

2.1  |  Study system

Our study system is Hald Lake in Denmark (Figure 1), which covers 
an area of approximately 3.4 km2 with a max depth of 31 m (Jeppesen 
et al., 1999). From April 2019 to February 2020, 70 Thelma TBR 700 
receivers were in place over the entire range of Hald Lake (Figure 1). 
Three species were tagged as part of a broader ecological study, in-
cluding brown trout Salmo trutta, European eel Anguilla anguilla and 
northern pike, which was carried out in accordance with the permis-
sion 2012-DY-2934-00007 from the Danish Experimental Animal 
Committee. We limit our analysis to detections from a single adult 
(length = 93.2 cm) female pike that was tagged with a Thelma D-HP9 
tag (30.5 mm long × 9 mm diameter, ~9 month duration) that trans-
mitted at 71 kHz. Acoustic transmissions were programmed to occur 
randomly within a fixed interval of 10–30 s to reduce collisions. Our 
data include these random times, but other datasets do not.

2.2  |  Data notation

Detection data are structurally complex. They require a combination of 
three data types: tag and receiver metadata, and logs of detections at 
each receiver, such that a single observation consists of a time-stamp 
associated with a receiver location and a tag ID (Whoriskey et al., 2019). 
Detections are spatially-discrete, and can be biased based on prede-
fined receiver locations, for example, if receivers are placed only in fa-
vourable habitats. The probability of detection varies based on many 
factors including time, environmental condition and distance between 
the receiver and tag. Thus, true animal absence cannot be measured, 
and the meaning of presence is dynamic because it is recorded within 
a changing detection range. When detection ranges overlap, a single 
data unit (transmission) yields multiple observations (detections).

With these idiosyncrasies in mind, we introduce the following 
notation. The index i will be used for a variable ordered in time. 
It ranges from 1 to N, where N denotes the total number of data 
units (transmissions), but not the total number of observations (de-
tections). When indexed with a colon, for example, 1:N, this entails 
all values including and between 1 and N. The index c denotes the 
coordinate axes, which in our case will be Eastings or Northings. 
Two indices will be used for behavioural states: j, and k, and these 
each range from 1 to m total state values (here m will equal either 
2 or 3). In a minor abuse of notation but for concision and ease of 
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interpretability, r will be used to both denote the location of a re-
ceiver (in which case it will be subscripted by c), and to index a vari-
able at a receiver (in which case r will be the subscript); a misconduct 
that is only mildly offensive because locations are unique among re-
ceivers. Finally, bold characters denote vectors and matrices.

2.3  |  Model definition

YAMS is an SHM that takes advantage of both the SSM and HMM 
paradigms. The full model that we consider is:

Table 1 describes all terms. Equations 1–3 demonstrate how this model 
is hierarchical with three levels that relate to the measurement process 
of detecting an acoustic tag (Equation 1), the movement of the animal 
(Equation 2), and the unobserved states that are assumed to drive the 
movement and are interpreted as behaviours (hereafter, behavioural 
states; Equation 3).

2.3.1  |  Measurement

We observe τr,i, the time that a transmission arrives at receiver r. 
This is distinguished from the time that the transmission originated 
at the tag, which we denote ti. We calculate the distance between 
the receiver location rc and unknown tag location xc,i, where c de-
notes the appropriate coordinate axis, and represent this with dr,i. 
Then, the expected travel time of a transmission is calculated from 
dr,i and the speed of sound υ, and this is added to ti to get the ex-
pected time, �r,i , that a transmission arrives at a receiver. In some 
implementations of YAPS, � is modelled as a Wiener process or in-
cluded as data; here for simplicity, we assume that it is constant, 
that is, � = 1, 465m∕s. The stochasticity of the transmission time ti 
depends on whether the random transmission interval Δi is known 
or not. When known, as is the case in our implementation, ti is a sum 
of the previous transmission time ti−1, Δi, and an internal clock drift 

(1)Measurement =

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

�r,i =�r,i+er,i ∼T3

�r,i = ti+dr,i�
−1

dr,i =
��2

c=1

�
rc−xc,i

�2 �0.5

ti = ti−1+Δi+�i

�i−�i−1 ∣ �i−1, �i−2∼N
�
�i−1−�i−2�

2
�

,

(2)Movement =
(
xc,i ∣ xc,i−1 ∼ N

(
xc,i−1,

(
2 ⋅Dbi

⋅
(
ti− ti−1

))0.5 )
,

(3)Behaviour =
(
Pr

(
bi =k bi−1= j

)
=Aj,k

(
ti−1ti

)
,

Term Definition

i Index of observations ordered in time

ti Irregularly observed time of origin of a transmission

m Number of behavioural states

j, k Indices for behavioural states

c Coordinate axis

rc Receiver location indexed by coordinate axis; because locations are 
unique among receivers, r  is used synonymously with receiver ID

bi Behavioural state at time ti
xc,i Location of animal at time ti in coordinate axis c

�r,i Observed time that a transmission arrives at a receiver

�r,i Predicted time that a transmission arrives at a receiver

er,i Error between the observed and predicted time of arrival of an acoustic 
transmission at a receiver

T3 A t-distribution with three degrees of freedom

� Estimated scale parameter of T3
dr,i The distance between receiver r  and the unobserved true location of the 

animal at time ti. This is computed for all receivers and all transmissions

Δi Temporal interval between transmissions ti−1 and ti
�i Tag internal clock drift at time ti to account for variability between ti and Δi

�2 Variance for the random walk modelling the tag drift

� Speed of sound. We keep this constant at 1,465 m/s

Dbi
Diffusion parameter of the animal movement process

Q Generator matrix of the continuous-time Markov process

A
(
ti−1ti

)
Continuous-time analogue to the transition probability matrix

TA B L E  1  Parameter definitions for the 
YAMS formulation
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�i that is modelled with a random walk on its first differences with 
variance �2. Finally, errors in the expected versus observed times of 
arrival can originate from multiple sources including, for example, 
varying aquatic conditions affecting the speed of sound or physical 
obstructions causing the transmissions to ‘bounce’ before reaching 
a receiver. This measurement error is accounted for by modelling 
the difference between the observed and expected transmission ar-
rival times, er,i, as a scaled t-distribution with three degrees of free-
dom (T3) and scale parameter �, as in (Baktoft et al., 2017).

2.3.2  |  Movement

The locations are assumed to follow a Wiener process (Equation 2) 
with diffusivity parameter Dbi

, which emulates discrete-time random 
walks in continuous time.

2.3.3  |  Behaviour

Because the locations are modelled at irregular time intervals, 
we choose to model the behavioural states with a continuous-
time Markov process. This process is governed by the generator 
matrix Q:

that has dimension m × m, with qii = −
∑

i,j≠iqij, and all qij > 0 for i ≠ j. 
The negatives of the diagonal elements, − qii describe the rate of transi-
tion out of state i , that is, an animal will remain in state i  for an amount 
of time that is exponentially distributed with rate parameter − qii and 
mean − q−1

ii
 (Ross,  1996). The off-diagonal elements denote the rate 

of transitioning from state i  to state j. Given that an animal switches 
out of state i , it will switch into state j ≠ i with probability − q−1

ii
× qij 

(Ross, 1996).
Maximizing the likelihood of a hierarchical model similar to 

Equations  1–3 is difficult because of large numbers of both con-
tinuous and discrete random effects (Altman,  2007; McKellar 
et al., 2015). Rather than attempting to maximize the full likelihood 
directly, we employ the procedure outlined in Whoriskey (2021) to 
estimate parameters and predict random effects via iterative opti-
mization of an HMM and SSM likelihood. We now describe the SSM 
and HMM likelihoods below.

2.4  |  State-space model likelihood

Given predicted values of x1:N that we treat as known, Equations 2 and 
3 are efficiently maximized with the likelihood of a continuous-time 

HMM (see Section 2.5), which we denote by LHMM

(
Θ x̂1:N

)
 , where 

Θ denotes the full parameter set of this likelihood. Then, given a 
known (predicted) sequence of behavioural states, the joint likeli-
hood for Equations 1–2 is

where f ( ⋅ ) denotes the appropriate probability distribution based on 
Equations 1 and 2. Importantly, the expression above denotes the joint 
likelihood (conditional on b̂) of all of the parameters Ψ =

{
�2Dbi

}
 and 

random effects 
{
�x1:N

}
, and these random effects must be integrated 

over their respective state spaces in order to obtain the marginal likeli-
hood necessary for maximum likelihood estimation of the parameters. 
That is, we optimize:

Because this integral is analytically intractable, we approximate it using 
the Laplace approximation as implemented in TMB.

2.5  |  Hidden Markov Model likelihood

Throughout this paper we interchange discrete-time and continuous-
time to refer respectively to regular and irregular sampling, as is 
commonly adopted within the literature. In reality, observing any 
ecological process in continuous time is near impossible, or at least 
practically infeasible; to do so would require technology capable of 
recording infinite observations at infinitesimally small temporal inter-
vals. In practice, all animal movement data represent discrete-time 
realizations of continuous-time behavioural processes. We therefore 
stress that the continuous-time processes that we utilize enable the 
user to predict locations and behavioural states at the temporal inter-
vals of our choosing, which in our case are irregular. With this philoso-
phy in mind, we describe our continuous-time implementation of the 
forward and Viterbi algorithms, as well as our calculation of pseudor-
esiduals. As part of our model implementation, we fit a continuous-
time HMM. For a Markov process, the probability of switching from 
bi−1 to bi within the observed interval 

[
ti−1ti

)
 can be derived from the 

generator matrix Q. The Kolmogorov differential equations give us 
the relationship between the transition probabilities from times ti−1 
to ti, which we denote with A

(
ti−1ti

)
 , and Q:

This is the Kolmogorov forward equation in matrix form in continuous 
time (Ross, 1996), which has the solution:

(4)Q =

⎛⎜⎜⎜⎜⎜⎜⎝

q11 q12 ⋯q1m

q21 q22 q1m

⋮ ⋱

qm1qm2 qmm

⎞⎟⎟⎟⎟⎟⎟⎠

,

(5)

L
(
Ψx1:N� b̂

)
=

N∏
i=1

{( ∏
r

f
(
�r,i

))
f
(
�i�i−1�i−1

)( 2∏
c=1

f
(
xc,i ∣ xc,i−1, b̂i

))}
,

(6)

LSSM

(
Ψ | b̂

)
=∫{x1:N ,�1:N}

N∏
i=1{(∏

r

f
(
�r,i

))
f
(
�i , �i−1|�i−1

)( 2∏
c=1

f
(
xc,i , xc,i−1|bi

))}
d
{
x1:N , �1:N

}
.

(7)A
�
(
ti−1ti

)
= A

(
ti−1ti

)
Q.

(8)A
(
ti−1ti

)
= eQ×(ti−ti−1).
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 Thus, for an irregular time interval 
(
titi−1

)
, we now have 

Pr
(
bi = k bi−1 = j

)
= Aj,k

(
ti−1ti

)
. In the classic discrete-time HMM 

(without temporal covariates; see e.g. Li & Bolker,  2017) where 
the switching probabilities are invariant with respect to time, 
Pr

(
bi = k bi−1 = j

)
= Aj,k

(
0Δt

)
, where Δt is the constant temporal 

interval between successive observations. We directly substitute the 
probabilities Pr

(
bi = k bi−1 = j

)
 into the calculations for the forward 

and Viterbi algorithms, as well as for the pseudoresiduals (Zucchini 
et al., 2016). That is, the m × 1 vector of forward probabilities, �i, that 
contains the joint probabilities of being in each state at time ti and ob-
serving all data from time t1 to ti, is calculated recursively as

 as in (Lu, 2017) where P
(
x̂i

)
 denotes the diagonal matrix with diagonal 

entries equal to f
(
x̂i x̂i−1bi

)
, determined by Equation 2. We carry these 

calculations through to time tN as in the forward algorithm (Zucchini 
et al., 2016) to obtain the likelihood LHMM as

 

 where Θ denotes the full set of parameters governing the movement 
and behavioural processes in Equations 2–3, 1 is a m × 1 column vector 
of ones, and � is the initial distribution, that is, the kth element corre-
sponds to Pr

(
b1 = k

)
. We set � equal to the stationary distribution of 

the continuous-time Markov chain which gives the limiting proportion 
of time spent in each state (Cox & Miller, 1965), and can be interpreted 
as an activity budget of the study animal (Lawler et al., 2019).

We implement the Viterbi algorithm in continuous time in order 
to determine the most likely sequence of hidden states given the 
model parameters by locally and recursively maximizing path seg-
ments from bi−1 to bi ∀ i (Forney,  1973; Zucchini et al.,  2016). This 
algorithm maximizes the joint probability of the observations and all 
possible behavioural state sequences Pr

(
b, x̂1:N

)
, which can be con-

veniently expressed by

 Maximizing this over all possible b would require mN calculations; the 
Viterbi algorithm reduces the computation time to be linear in N by 
recognizing that we need only maximize Pr

(
bi bi−1

)
Pr

(
x̂i bi

)
 for each 

i  over all possible bi−1 (Forney, 1973; Zucchini et al., 2016). Because 
the transition probabilities of the Viterbi algorithm need not be time 
invariant (Forney, 1973), we again directly substitute the appropriate 
elements of A

(
ti−1ti

)
 wherever Pr

(
bi bi−1

)
 is required. Similarly to 

other continuous-time switching animal movement implementations 
(e.g. Michelot & Blackwell, 2019; Parton & Blackwell, 2017), our like-
lihood enables switches between states to occur outside of the dis-
cretely sampled observation times. Unlike these other approaches, 

however, we do not concern ourselves with predicting the times that 
the switches occur, rather we focus our state predictions on the sam-
pling times (i.e. the initiation times of the transmissions). Furthermore, 
our approach does not allow for multiple behavioural state switches 
between observation times.

Finally, we use forecast pseudoresiduals (zi) to assess model 
validity. If the model is appropriate for the observed data, then 

zi = Φ−1
(
Pr

(
X̂i ≤ x̂i X̂1:i−1 = x̂1:i−1

))
, where Φ−1 is the inverse cu-

mulative standard Normal distribution function, should be distrib-
uted as a standard Normal distribution (Zucchini et al.,  2016). In 
order to calculate zi, we require Pr

(
bi = k bi−1 = j

)
, which we obtain 

from A
(
ti−1ti

)
 and substitute directly into the standard pseudoresid-

ual calculation (Zucchini et al., 2016):

where F
(
x̂i

)
 is a diagonal matrix with entries equal to the cumula-

tive distribution function of the observations given the current be-
havioural state. In practice, because each ̂xi is multidimensional where 
the coordinate axes are assumed independent of each other, the 
pseudoresiduals are calculated for each coordinate axis separately. 
Importantly, these residuals are dependent on the accuracy of the lo-
cation state predictions, x̂. As a result, they can only be used to assess 
the model fit from Equations 2 and 3, and cannot be used to assess 
the fit of Equation 1.

2.6  |  Model fitting

In practice, we carry out the iteration as follows. To optimize the 
SSM step, we require a known sequence of behavioural states. To 
optimize the HMM step, reasonable location values are necessary. 
As a result, to initialize the optimization we could either treat a ran-
domly generated sequence of behavioural states as known, or we 
need to obtain initial values of the locations in continuous space. We 
choose the latter option, and achieve this by fitting a one-behaviour 
SSM (YAPS) to the observed data. A HMM according to Equation 11 
(Section 2.5) is then fitted to these initial values, from which we ob-
tain behavioural state predictions and estimates of Θ. The behav-
ioural state predictions are then treated as known in the SSM step 
(Equation 6). In Whoriskey  (2021) the movement parameters were 
also fixed during the SSM step. However, in this implementation we 
achieved better performance by treating the Dbi

 as unknown during 
both the HMM and SSM steps. We run the iteration for a fixed num-
ber of steps, and following the implementation of Whoriskey (2021), 
assume that the parameter estimates from the iteration with the 
maximum LSSM

(
Ψ̂MLE b̂

)
 (the likelihood of the SSM step evaluated 

at the maximum likelihood estimates of the parameters) represent 
the global maximum because this theoretically corresponds to the 
parameter set that is most likely given the observed data. In practice, 
all calculations are performed on the negative log scale.

(9)�i = �i−1A
(
ti−1ti

)
P
(
x̂i

)
,

(10)LHMM

(
Θ | x̂) = �N1

(11)

= �
�
A
(
t1t2

)
P
(
x̂2

)
A
(
t2t3

)
P
(
x̂3

)
⋯ A

(
tN−1tN

)
P
(
x̂N

)
1,

(12)Pr (b)Pr
(
x̂1:N b

)
= Pr

(
b1
) N∏

i=2

Pr
(
bi bi−1

)
Pr

(
x̂i bi

)
.

(13)zi = Φ−1

{
�t−1A

(
ti−1ti

)
F
(
x̂i

)
1

�t−11

}
,
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We additionally note that two other optimizations must occur in 
order to predict the random effects. For the location and drift states, 
the optimization occurs iteratively within the likelihood calculations 
via TMB; for the behavioural states, it is implemented via the Viterbi 
algorithm ex post. Equations 11 and 6 show clearly that we are it-
erating between the maximization of two conditional likelihoods, 
which is a frequentist analogue to many Bayesian implementations 
of Markov Chain Monte Carlo simulations, where proposed samples 
are iteratively obtained from many conditional distributions (e.g. 
Parton & Blackwell, 2017).

2.7  |  Analysis

We fitted YAMS to approximately six days' worth of data collected on 
an adult female pike tracked in Hald Lake in summer, 2019. Because 
many detections occur for a single transmission, and because the 
transmission interval is often small compared to the temporal scale 
of the study (in our case, 10–30 s), a relatively short study duration 
can yield a large dataset. In our analysis, approximately 6 days of 
monitoring a single pike resulted in 144,625 detections from 25,000 
transmissions. Given that for N transmissions, there are 4N random 
effects in our model, analysing a dataset of this magnitude is difficult. 
We therefore broke the dataset into groups of 5,000 transmissions, 
and fitted YAMS to each group, with both two and three behavioural 
states. We chose 5,000 transmissions based on previous experience 
and success when fitting YAPS: too few data would result in many 
groups for a single individual, but too many data increases the num-
ber of random effects and can make optimization more difficult. For 
each group, we ran the model for 10 steps.

To carry out a proper simulation study (Section 2.8), we required 
an estimate of the detection efficiency to mimic whether a simulated 
tag transmission was successfully registered by a receiver. The terms 
detection efficiency and detection range are often used interchange-
ably. Range and efficiency both describe the relationship between the 
probability of detection at a receiver and distance to the tag; we refer 
to a receiver’s range when distance is the variable of interest, and its 
efficiency when the probability of detection is of interest. We calcu-
lated the efficiency based on model results as follows: first, we com-
puted all distances between each location of the predicted track and 
all receivers. We then binned these into groups based on 5 m intervals 
of distance, and calculated the proportion of receivers that registered 
a tag transmission. To quantify the detection efficiency, we split the 
data into 70% training and 30% testing datasets and fitted a binomial 
generalized additive model using the R package mgcv (Wood, 2017) 
to the proportion of successfully registered transmissions as a func-
tion of the smoothed distance between the tags and receivers.

2.8  |  Simulation and the snapshot principle

When fitting continuous-time HMMs, it is necessary to consider 
whether the snapshot principle holds, which is the assumption that 

the observed movement of an animal is only dependent on the ac-
tive behavioural state (Patterson et al., 2017). In our implementation, 
we relax the assumption of the snapshot principle in order to utilize 
computationally efficient machinery for approximating the likeli-
hood and predicting the behavioural states. To assess the validity 
of our approximation, we designed the following simulation study.

We simulated 60 tracks using the estimated parameters of the 
first group of 5,000 transmissions. First, we simulated 4,999 trans-
mission intervals from a Uniform distribution with limits of 10 and 
30 s, and 5,000 tag drift times. Then, we simulated the embedded 
Markov chain, that is, the discrete chains of holding times within 
states and jumps to the next state, which we used to create the 
sequence of 5,000 behavioural states. To test our approximation, 
we combined the exact behavioural switching times with our ob-
servation times (and the corresponding states at switching with our 
behavioural state sequence), and simulated the animal locations 
based on these augmented sequences. Once the full path of 5000+ 
locations was simulated, we removed the locations and behavioural 
states corresponding to the exact switching times in order to simu-
late the effect of the unobserved and unaccounted for behavioural 
switches. From here, we randomly placed the track within the lake 
and calculated the distances from every location to each hydro-
phone. To simulate detections, we used the detection efficiency 
model results to predict the probability that each receiver would 
have detected the simulated track based on these distances, then we 
simulated a detection at each receiver with a Bernoulli trial. Finally, 
we fitted YAMS to each simulated dataset, and quantified the root 
mean squared error (RMSE) of the parameter estimates, the RMSE of 
the locations and the behavioural state accuracy as the proportion 
of behavioural states correctly identified (see Whoriskey, 2021).

3  |  RESULTS

3.1  |  Pike dataset

We fitted both two- and three-state models to the pike dataset 
(Table 2). According to pseudoresidual QQ plots, both models ap-
peared to fit well (Figure A.1, Supporting Information). Table  2 
displays the estimated Dbi

 for each model for the full pike dataset. 
Increasing state numbers correspond to increasing levels of disper-
sion, such that larger state numbers can be interpreted as ‘faster’ 
movement relative to smaller state numbers. We interpret any 
Dbi

< 10 as slow movement, 10 ≤ Dbi
< 20 as medium speed move-

ment and 20 ≤ Dbi
 as fast. These divisions were selected arbitrarily, 

and are used to provide an intuitive means for comparing the val-
ues of Dbi

 across groups. The two-state model identified a slow state 
for all five groups. Fast movement was identified for the first group, 
while the other four groups included a medium speed state. For this 
model, the slow state was observed along most of the track (56%–
78% of the time), as determined by the activity budgets and the 
mean durations spent within a state (Table 2). The three-state model 
identified at least one slow state. Four of the five groups identified a 
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second slow state, coupled with either a medium speed state (groups 
3 and 4) or a fast state (groups 1 and 5). Group 2 identified both a 
medium speed state and a fast state. This model generally produced 
results consistent with the two-state model, for example, it also sug-
gested that the pike spent most of its time in a slow state (noting that 
multiple slow states were observed for most groups; Table 2).

Figure 2 reproduces the pike path coloured by behavioural state, 
which occurred in the Southwest portion of the lake. The pike ap-
peared to swim faster on the outer perimeter of the lake, and slower 
towards the interior.

The increasing values of Dbi
 correspond well with the observed 

speeds of the animal (Figures 3 and 4). The distribution of speeds 
changed over data group, which can be seen from the variability 
in the observed ranges of speeds in Figures 3 and 4. This also cor-
responds with the dynamic values of Table 2. Greater segregation 
among states occurred in the two-state model compared to the 
three-state model (Figure 3; Table 2).

3.2  |  Simulation study

We used the GAM depicted in Figure  5 to simulate detections 
of an animal throughout the lake given an underlying movement 

TA B L E  2  Three sets of results for the two- and three-state 
models fitted to each of the five groupings of the pike dataset. In 
the first set, the results for Dbi

 estimated by the HMM are reported, 
which govern the movement of the animal. The second set depicts 
the activity budgets of the animal, as determined by the stationary 
distribution. The third set is the mean time spent within a state as 
determined by the diagonal entries of the generator matrix

Group 
1

Group 
2

Group 
3

Group 
4

Group 
5

Dbi

Two-State Model

State 1 0.97 2.03 0.36 1.38 1.05

State 2 20.76 18.51 11.45 13.63 14.02

Three-State Model

State 1 0.19 0.74 0.16 0.23 0.25

State 2 3.69 11.88 1.42 1.39 3.59

State 3 24.75 23.70 13.32 17.03 27.78

�i

Two-State Model

State 1 0.56 0.65 0.59 0.74 0.78

State 2 0.44 0.35 0.41 0.26 0.22

Three-State Model

State 1 0.27 0.59 0.38 0.38 0.63

State 2 0.41 0.20 0.29 0.38 0.26

State 3 0.32 0.21 0.33 0.24 0.11

− q−1
ii

Two-State Model

State 1 11.51 12.61 13.83 22.00 15.47

State 2 9.15 6.78 9.67 7.85 4.47

Three-State Model

State 1 4.91 8.39 8.28 13.85 15.20

State 2 5.78 2.78 3.86 9.28 4.69

State 3 11.68 60.95 8.95 8.27 8.20

F I G U R E  2  Compiled model track and behavioural state results 
from fitting YAMS to a set of acoustic detections collected on 
a female pike over 6 days in Hald Lake, Denmark. Top includes 
results from the two-state model, while bottom contains the 
results of the three-state model. Yellow, blue and red colours 
denote behavioural states 1, 2 and 3 respectively. Within a 
model result, increasing values of the behavioural states denote 
increasing dispersion
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path. These results showed that detection efficiency dropped 
nonlinearly with distance, with predicted detection probabili-
ties of 0.74, 0.42 and 0.08 at distances of 100, 250 and 500 m 

from the receiver. Although other models were considered (e.g. 
mixed effects models to account for within-receiver variability), 
our model that considered the variability in detection efficiency 

F I G U R E  3  Observed pike speed over time calculated from location and time of transmission predictions for both the two-state (top) 
and three-state (bottom) models. Yellow, blue and red colours denote behavioural states 1, 2 and 3 respectively. Within a model, increasing 
values of the behavioural states denote increasing dispersion. Dotted lines separate the time series by the data groups that were used to fit 
the models
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F I G U R E  4  Histograms of the observed speeds of the pike calculated from the location and time of transmission predictions for both the 
two-state (top row) and three-state (bottom row) models. Overlaid densities correspond to the density of the observed speeds within each 
behavioural state, and have been scaled to align appropriately with the histograms. Yellow, blue and red colours denote behavioural states 1, 
2 and 3 respectively. Within a model result, increasing values of the behavioural states denote increasing dispersion. Column facets separate 
the data by the groups that were used to fit the models
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to be constant throughout space was determined to fit the best 
based on cross-validation with 70% training and 30% testing 
datasets.

We fitted YAMS to 60 simulated tracks under both a two-state 
and three-state scenario. Within each simulation study, 22 of the 
models either falsely converged, or did not converge. These re-
sults were removed, leaving 38 model results. The two-state sim-
ulation study yielded a mean behavioural state accuracy of 0.94 
(median = 0.95, Figure 6), and an average location RMSE of 1.8 m 
(median  =  1.6  m). The three-state simulation study showed lower 
levels of accuracy in the behavioural state prediction, with an av-
erage proportion of 0.79 (median = 0.81) of the behavioural states 
being correctly classified. However, the three-state model achieved 
similar precision in the location state predictions, with an average 
RMSE of 1.8 m (median = 1.5 m, Figure 6). Parameter results were 
also precise, as documented by Tables B.1 and B.2 (see supplemen-
tary material).

4  |  DISCUSSION

This research combines the existing SSM of YAPS with a la-
tent Markov chain and the iterative model fitting framework of 
Whoriskey (2021) to develop a novel SHM designed specifically for 
acoustic detections. With this formulation, a researcher need not 
depend on positioning algorithms from manufacturers, which can be 
expensive and contain larger amounts of error, and they can con-
veniently utilize the same model likelihood that predicts the location 
states to predict behavioural states. We demonstrated the capabili-
ties of this model to identify multiple behavioural states of a preda-
tory fish, and tested its accuracy using simulation studies. Several 
decisions were made during model fitting that impacted the results.

To maintain consistency with YAPS, we chose a relatively sim-
ple process to model animal movement with a single parameter (Dbi

) 
that governs the dispersion of an animal in any direction. More com-
plex processes could yield more details on how movement evolves 
through time. For example, using an Ornstein–Uhlenbeck process 

F I G U R E  5  Results from a binomial-
response generalized additive model 
fitted to detection efficiency data derived 
from the YAMS predicted pike locations. 
Efficiency was calculated for every 5 m 
interval. Training data (70%) used to fit 
the model are depicted in blue where 
the shade of blue denotes the number of 
detections used in the calculation. The 
red line shows the fitted values from the 
model. Orange points are the data used 
in testing the model (30%), while the red 
points are the corresponding fitted values
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F I G U R E  6  Results from fitting YAMS to 38 simulated animal 
tracks based on the two-state and three-state model results 
(respectively) from the first group of data. Top: behavioural state 
accuracy, calculated as the proportion of correctly identified 
states. Bottom: location state accuracy, calculated as the root mean 
squared error (RMSE; m). Blue and green results denote the two- 
and three-state models respectively
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on the velocities, rather than a Wiener process on the locations, 
could allow for estimation of drift or home range tendencies and 
autocorrelation within the track (Johnson et al., 2008; Pedersen & 
Weng,  2013). Alternatively, modelling the step lengths and turn-
ing angles as separate continuous-time processes could provide 
more easily accessible interpretations of movement (Parton & 
Blackwell, 2017). In our pike analysis, we found that the Wiener pro-
cess was sufficient to identify behavioural states that corresponded 
well with differences in the observed speed of the animal (Figure 4). 
Future research might benefit from investigating the utility of more 
complex movement models, however, other researchers have ratio-
nalized the use of more simplistic models in order to provide quick 
and accurate results (Jonsen et al., 2020).

When fine-scale positioning of acoustically tagged animals is a 
primary research goal, shorter transmission intervals and extensive 
receiver coverage over the entire study area will often result in ex-
tremely large datasets. In our case, approximately 6 days' worth of 
observation on a single pike yielded 25,000 transmissions. Because 
computational limitations prevented us from fitting a single model 
to the full dataset, we split the dataset into five groups of 5,000 
transmissions each. Future studies should consider that different 
groupings (e.g. 10,000 instead of 5,000) could yield varying results 
and therefore provide different interpretations of the behavioural 
states. In addition, for a classic telemetry study, which often com-
prises >10 animals for months at a time, our implementation could 
take days to weeks to complete depending on available computing 
resources. We suspect these limitations will lessen with increasing 
development of computer hardware and software, thereby enhanc-
ing the analysis of increasingly large datasets.

YAMS requires an ancillary stochastic step that we did not de-
scribe because it is unaltered from the original YAPS implementation. 
Both acoustic receivers and tags contain time keeping mechanisms 
that experience drift. Small values of drift, even microseconds, can 
lead to error in position estimates on the order of metres because 
transmissions travel at the speed of sound. Although we can ac-
count for drift in the tag clocks within YAPS/YAMS, accounting for 
drift in the receiver clocks must also be achieved, and we did this 
prior to fitting the movement models by using an SSM (via YAPS) 
to synchronize the receiver clocks (Baktoft et al.,  2019). Receiver 
synchronization, whether it is achieved by an SSM or other tactic, is 
typically required regardless of the method used to generate posi-
tional estimates (e.g. Smith, 2013). The reader is referred to Baktoft 
et al. (2019) for a guide on synchronizing the receiver clocks.

In our continuous-time HMM formulation we are allowing the 
behavioural process to switch between sampling times. However, in 
our movement process, we specify that an animal’s location at time 
ti is only dependent on the behavioural state at time ti. For those 
occasions where the behavioural state switches between sampling 
times, the movement-behaviour dependence is not precise because 
the movement of the animal depends on the behaviours at both 
the current and the previous sampling times, bti−1 and bti (snapshot 
principle; Patterson et al.,  2017). To precisely model movement 
when the switches occur, the times of switches would have to be 

predicted. This has been done in Bayesian formulations (Michelot 
& Blackwell,  2019; Parton et al.,  2017). Instead, here we relaxed 
the snapshot assumption such that we could use HMM and SSM 
likelihood machinery available through TMB to approximate our 
likelihood around the times of switches, and take advantage of this 
platform’s relative speed compared to sampling techniques (Auger-
Méthé et al., 2016; Whoriskey et al., 2017). However, we specifically 
designed our simulation studies to measure the error in our model 
fitting procedure incurred in part by this approximation. The results 
showed high levels of accuracy for the behavioural and location 
states, suggesting that our model is accurate despite relaxing the 
snapshot assumption. This is likely because the temporal resolution 
of our data (observations occurring randomly every 10–30 s) is fine 
relative to the scale of the behavioural states that we are predicting. 
Longer transmission intervals might incur larger amounts of error, 
therefore future researchers who use YAMS should carefully con-
sider the temporal scales of their inferred behaviours relative to 
their observations and re-evaluate the snapshot principle with simu-
lation studies when necessary.

The simulation studies showed a high level of accuracy attained 
by both the two- and three-state models. We did have to omit ap-
proximately one third of the simulated tracks based on false or lack 
of convergence. This was surprising because we encountered this 
very infrequently during model fitting on the real data (we had false 
convergence for 1 of 10 steps when fitting the two-state model to 
the first group, and for 2 of 10 steps when fitting the three-state 
model to the fourth group), but may be explained by the fact that 
sometimes simulations cannot fully capture the variability inherent 
to real-life scenarios. When it is not possible to eliminate problem-
atic tracks (e.g. when analysing real data), researchers may success-
fully fit models with TMB if they change starting values either by 
adding a small amount of random noise or by selecting a new set en-
tirely. The 15% decrease in behavioural state accuracy in the three-
state model relative to the two-state model could be explained by 
the fact that the three-state model had decreased separation in the 
estimated values of Dbi

 which drive the state classification. Our case 
might also be explained by the fact that the three-state model did 
involve considerably more switches (136–209) among behavioural 
states than the two-state model (92–136). Although it seems rea-
sonable that more states and switches could result in larger amounts 
of error, it is also possible that this error resulted from our approxi-
mation in likelihood around the times of switches. However, we are 
unable to answer this question because our simulation studies were 
unable to separate error inherent to the behavioural state prediction 
from error specifically incurred by relaxing the snapshot assumption.

We now offer interpretations of the two-state rather than 
the three-state model with respect to pike ecology. We base this 
decision on (a) the average increase of 15% behavioural state ac-
curacy in the two-state model, (b) the increased segregation of 
the two-state movement parameters compared to the three-state 
model and (c) the dynamic nature of the behavioural states among 
groups. Importantly, we remind the readers that the states we have 
predicted are mathematically distinct, but can only be interpreted 
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with consideration of previous knowledge of the study animal and 
system.

Pike are commonly referred to as sit-and-wait predators 
(Eklöv, 1997). Laboratory experiments have shown that pike often 
remain stationary, watching and then ambushing prey when they 
come within range (Harper & Blake,  1991; Savino & Stein,  1989). 
They additionally suggest that pike will often track their prey slowly 
with an elongated posture before attacking (Harper & Blake, 1991). 
During prey capture attempts, acceleration can reach up to 96 m/
s2 (Harper & Blake, 1991). During escape, acceleration can be even 
higher (120 m/s2; Harper & Blake, 1991), thus, both behaviours are 
energetically costly (Frith & Blake, 1995). In this study, we were able 
to classify slow, medium and fast rates of movement of our single 
northern pike. It is unlikely that our fast state identified acute hunt-
ing or predator avoidance for three reasons. First, these events are 
nearly instantaneous, and our observed speeds did not reach those 
that have been previously documented for these behaviours. Here, 
our maximum observed speed was ≈ 1.15 m/s, compared to maxi-
mum speeds of ≈ 3 and ≈ 4 m/s for predatory and escape behaviours 
respectively (Harper & Blake, 1991). Second, the fast behaviour had 
a large variability in observed speed, including values that might 
suggest stationary movement (Figure  3). Third, the fast behaviour 
was persistent, that is, the pike was observed to remain within this 
behaviour for an extended period of time (≈5–10 min; Table 2), there-
fore it is unlikely that this animal was consistently hunting or avoiding 
predators during these time periods given the energetic cost (Frith & 
Blake, 1995). It is more likely that the fast behaviour is documenting 
exploratory travel throughout the lake, which could include either of 
the above rapid response behaviours.

We offer two explanations for the slow behaviour. This state did 
not identify stationary behaviour by itself, as we documented speeds 
within this state >0 m/s, and the pike still covered distance while 
within this state (Figure  2). However, it is possible that this state 
identifies a composite of stationary behaviour and slow tracking of 
prey items before prey capture attempts. Alternatively, it is possi-
ble that this pike adopts a slow, steady speed at regular intervals 
and for a majority of its time (Table 2) to conserve energy that may 
be needed for rapid acceleration at later, opportunistic times. This 
has been proposed to explain an observed high proportion of low 
activity in another ambush predator, the great barracuda Sphyraena 
barracuda (O’Toole et al., 2010). Fine-scale accelerometry data could 
help to distinguish between these two possible behaviours.

Our implementation works well when receivers are closely 
spaced relative to their detection efficiency, and when the study an-
imals remain within the receiver array. We developed YAMS under 
the assumption that the random transmission intervals are known 
and that the speed of sound is constant, however, it should be eas-
ily extendible to cases including unknown intervals or stochasti-
cally varying speed of sound, as these implementations are already 
available in YAPS. Furthermore, other HMM functionality could be 
incorporated, for example the inclusion of covariates to assess the 
influence of environmental variables on behavioural state switch-
ing (Michelot et al., 2016). We hope that YAMS will help unlock the 

utility of HMMs for acoustic telemetrists, such that they can gain 
insight into the underlying drivers of movement and further our un-
derstanding of, for example, foraging ecology (Nowak et al., 2020), 
differences among colonies (Dean et al., 2013; Whoriskey, 2021), in-
teractions of predators with fisheries (van Beest et al., 2019) and the 
effects of potentially harmful disturbances (deRuiter et al., 2017).
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