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ABSTRACT:
Estimates of abundance and their changes through time are key elements of marine mammal conservation and

management. Absolute marine mammal abundance in a region of the open ocean is often difficult to attain.

However, methods of estimating their abundance based on passive acoustic recordings are becoming increasingly

employed. This study shows that passive acoustic monitoring of North Atlantic minke whales with a single

hydrophone provides sufficient information to estimate relative population abundance. An automated detector was

developed for minke whale pulse trains and an approach for converting its output into a relative abundance index is

proposed by accounting for detectability as well as false positives and negatives. To demonstrate this technique, a 2

y dataset from the seven sites of the Atlantic Deepwater Ecosystem Observatory Network project on the U.S. east

coast was analyzed. Resulting relative abundance indices confirm pulse train-calling minke whale presence in the

deep waters of the outer continental shelf. The minkes are present December through April annually with the highest

abundance near the site offshore of Savannah, Georgia. VC 2021 Acoustical Society of America.
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I. INTRODUCTION

Most odontocetes and some mysticetes, including

minke whales (Balaenoptera acutorostrata), form social

networks (Risch et al., 2013) in which acoustic communica-

tion plays an important role (reviewed in Erbe et al., 2016).

Baleen whales communicate with each other over long dis-

tances through low-frequency (15–500 Hz) acoustic signals

known as vocalizations. These vocalizations are often used

to study their behavior (Risch et al., 2013). Some baleen

whales, such as humpback whales (Megaptera novaean-
gliae) (Payne and McVay, 1971; Garland et al., 2013) and

bowhead whales (Balaena mysticetus) (Stafford et al.,
2018), combine individual sound units to generate a series

of notes in a detectable temporal pattern similar to bird

songs (Broughton, 1963; Payne and McVay, 1971).

Broughton (1963) defined the concept of the song: “…a

series of notes, generally of more than one type, uttered in

succession and so related as to form a recognizable sequence

or pattern in time.” Among baleen whale species, humpback

whales generate complex songs (Payne and McVay, 1971),

bowhead whales produce elaborate songs (Stafford et al.,
2008), and blue (Balaenoptera musculus) and fin

(Balaenoptera physalus) whales sing high intensity song

units at very low frequencies (about 15–30 Hz) (McDonald

et al., 2001; Croll et al., 2002). In several species, such as

humpback, fin, and blue whales, only males produce songs

(Glockner, 1983; Croll et al., 2002; Oleson et al., 2007).

In most baleen whale species, both sexes produce a range of

distinct call types in numerous contexts (Risch et al.,
2014b). North Atlantic minke whales produce low-

frequency pulse trains (50–400 Hz) with varying inter-pulse

interval (IPI) structure (slow-down, constant, and speed-up),

low-frequency down-sweeps (118–80 Hz), and series of

clicks in the 5000–6000 Hz range (Beamish and Mitchell,

1973; Martin et al., 2013; Risch et al., 2013; Davis et al.,
2017; Risch et al., 2019). The behavioral understanding of

the vocalizations of North Atlantic minke whales and

whether they are produced by a distinct sex or age is still

unexplored (Risch et al., 2014b).

Most baleen whales have large home ranges [some cov-

ering up to 10 000 km annually (Davis et al., 2020)], making

it problematic to gather information on their ecology in a

complete life-history (Risch et al., 2014a). Although all

baleen whales do not migrate annually, migratory popula-

tions move for different reasons, such as foraging and social

behaviors. Variation in migratory behaviors with gender,

age, and reproductive state, complicates our understanding

of their movement patterns (Davis et al., 2020).

The ranges of migratory marine mammals are currently

being affected by climate change. For instance, the Gulf of

Maine is one of the fastest warming bodies of water in the

world and is an important feeding ground for many baleen

whales. The warming waters are likely to affect the distribu-

tion of their food sources, resulting in seasonal shifts in

mammal distributions throughout the western North Atlantic

(Davis et al., 2020). Even though migration and seasonal

distributions of some species, such as humpback whale, are

well studied, little is known about the winter distribution of
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other large baleen whale species, such as minke whales in

the North Atlantic (Risch et al., 2014b). The humpback

whales migrate between breeding and feeding grounds

within the North Atlantic. Although the migration pattern of

sei whales (Balaenoptera borealis) is not well understood,

they were observed to move from mid to low latitudes in the

western North Atlantic. While fin whales are usually sighted

in the western North Atlantic, blue whales are generally

observed off eastern Canada in the western North Atlantic

(Davis et al., 2020). In many cases, such as with North

Atlantic minke whales, their abundance and seasonal distri-

bution have been studied across their summer ranges, but

data on migration routes and winter habitat are virtually

missing (Risch et al., 2014a).

Serious shifts in the distribution and abundance of several

baleen whale species have been reported. While the abundance

of Central North Atlantic (CNA) humpback and fin whales has

increased in the period from 1987 to 2007, the abundance of

minke whales on the Icelandic continental shelf decreased in

the period from 2001 to 2009 (Vakingsson et al., 2015). North

Atlantic minke whales are a species of Least Concern under the

IUCN Red List; this species is commercially hunted in sum-

mertime (Risch et al., 2019).

Minke whales are the smallest baleen whale species in

the Northeast Atlantic (Risch et al., 2019). Minke whales

are seen in northern latitudes in the summer and migrate to

warmer tropical waters to breed in the winter (Horton et al.,
2011; Martin et al., 2013; Silva et al., 2013). Minke whales

have been observed throughout the North Atlantic from

Baffin Bay to the Caribbean in the western North Atlantic

and from the Barents Sea to the west African continental

shelf in the eastern North Atlantic (Risch et al., 2013).

Most information on minke whale abundance has been

based on analyzing visual detections with techniques like

distance sampling (Buckland, 2001), capture–recapture

(Martin et al., 2013), and spatially explicit capture–

recapture (Marques et al., 2012). Visual methods generally

rely on humans to detect the animals and hence, are poorly

suited to situations where the animals are difficult to see,

such as during nighttime or adverse weather, as well as if

the species is difficult to spot (Marques et al., 2013; Risch

et al., 2013; Risch et al., 2014b). Conversely, passive acous-

tic monitoring (PAM) is an indirect observation method that

is effective for monitoring marine mammal populations if

their vocalization types are well understood and they vocal-

ize regularly (Marques et al., 2013). PAM uses underwater

hydrophones and loggers to record acoustic data over long

periods of time. The recording contains contributions from

different sources, such as marine life, human activities, and

natural sources like wind, ice, and waves. Since many spe-

cies generate readily detectable and distinguishable sounds

(Risch et al., 2013; Risch et al., 2014b), analysis of the PAM

data can yield information on the species distributions.

Manual analysis of PAM data to detect distinguishable

sounds produced by marine mammals is extremely labor-

intensive and time consuming, even for experienced analysts

(Kowarski and Moors-Murphy, 2020). It is far more efficient

to detect marine mammals’ vocalizations in large data sets

using automated detectors. A detailed understanding of

automated detector performance is essential when using

their outputs to obtain estimates of abundance.

Abundance estimation methods may provide estimates

of population size (absolute abundance) or indices (relative

abundance) (Eberhardt and Simmons, 1987; Chen et al.,
2004). As it is often difficult or impractical to estimate abso-

lute abundance, relative abundance indices are more com-

monly used (Dice, 1941; Nichols and Pollock, 1983; Chen

et al., 2004; Hopkins and Kennedy, 2004). Relative abun-

dance indices are of two general types: (1) an incomplete

count of animal numbers, or (2) a measure of some trait

related to abundance that can more easily be monitored in

their environment. For marine mammals, vocalizations are

such a trait (Skalski et al., 2005). A fundamental assumption

that must be made when using abundance methods is that

the index is correlated to true population size; preferably,

directly proportional to population size with a proportional-

ity that is (relatively) constant. Validating this assumption

for a relative abundance method is often impractical because

it also requires a known population size (Allen and

Engeman, 2015). Dice (1941:402) expressed the concept

succinctly: “The difficulty of obtaining accurate counts of

the number of individual mammals present on a given area

has led to attempts to develop indices of abundance for the

species concerned. Such indices may or may not be convert-

ible into terms of population density. For many practical

uses, however, it is sufficient to know the relative abundance

of a particular species in different areas or at different times

without having an exact count of the population”. It demon-

strates the importance of developing indices of abundance

and highlights that it has many practical uses.

To estimate abundance from detected vocalizations,

information on individual vocal behavior and a knowledge

of the detection range for the animals’ vocalizations are

required (Marques et al., 2013; Risch et al., 2014b; Harris

et al., 2018). The detection range depends on the source

level of the vocalizations, the local acoustic propagation

conditions, the frequency characteristics of the vocalization,

and the background noise level against which vocalizations

can be detected (K€usel et al., 2011). Marine mammal vocali-

zation source levels are poorly understood and can be highly

variable as the animals themselves respond to changes in

background noise (Fournet et al., 2018; Miksis-Olds et al.,
2019; Helble et al., 2020; Thode et al., 2020). The low-

frequency pulse trains of minke whales (50–400 Hz) have an

average source level (SLrms) ranging between 164 and 168

dB re 1 lPa (Risch et al., 2014b), with an estimate of a

median detection range up to 30 km at the lowest median

noise levels (93.09 dB re 1 lPa) for a particular habitat (i.e.,

Stellwagen Bank) (Risch et al., 2014a). Even though this

suggests that PAM devices can monitor a large area from a

single site, the size of the monitored area will fluctuate over

time due to the proximity of human activities, changing wind-

driven ambient sound levels and/or changes in vocal behavior

(Tyack, 2008; Carey and Evans, 2011; Pine et al., 2018).
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Abundance or density estimation methods, based on PAM

data, need to account for these effects.

Some marine mammal density and abundance estima-

tion methods based on PAM data have relied on propagation

modeling to predict the detection volume and thus, needed

to go through different analyses to arrive at estimated densi-

ties. For instance, Marques et al. (2009) applied digital time,

acoustic, and movement DTAGs (Johnson and Tyack, 2003)

to a number of beaked whale species to estimate different

parameters, such as probability of detecting a cue as a func-

tion of distance between the animal and the sensor.

Gathering such data is difficult and expensive and therefore,

these methods are not practical for every species or study

area.

Here, a method for estimating a relative abundance

index of the North Atlantic minke whales calling with pulse

trains on the outer continental shelf (OCS) of the North

American east coast is proposed. We introduce a detectabil-

ity coefficient from the hydrophone’s perspective to account

for noise and propagation conditions and to assess auditory

masking [unwanted masking noise which prohibits a biolog-

ically important sound to be detected (Erbe et al., 2016;

Pine et al., 2020)] at the receiver. Here, only information

about the detector performance and environmental noise is

used to obtain a relative index of abundance for pulse train-

calling minke whales; no knowledge of the actual area/

volume/detection range is required.

The paper is organized as follows: Sec. II describes the

Atlantic Deepwater Ecosystem Observatory Network

(ADEON) data and presents: (1) a manual analysis per-

formed to assess the automated detector performance, (2)

the automated detection algorithm, and (3) the derivation of

the relative abundance index. Section III contains the results

and presents: (1) detector performance and (2) relative abun-

dance index estimates. Discussion is found in Sec. IV.

Finally, Sec. V presents our conclusions.

II. METHODS

A. ADEON passive acoustic monitoring data

Data from the Atlantic Deepwater Ecosystem

Observatory Network (ADEON), located along the U.S. east

OCS, were used for this study. The ADEON project deployed

seven autonomous long–term observatory landers in waters

between 100 and 1000 m deep from Florida to Virginia (see

Table I). The sensors on the landers included passive acous-

tics, active acoustics, conductivity-temperature-dissolved

oxygen loggers, and a fish tag logger. The PAM data from

November 2017–November 2019 were employed in this anal-

ysis. The duty cycle and sample rate varied by year at all the

receivers: November 2017–November 2018; –44 min/h at

8000 Hz (using AMAR G3, JASCO Applied Sciences,

Dartmouth, Canada) and November 2018–November 2019;

–42 min/h at 16 000 Hz (using AMAR G4, JASCO Applied

Sciences, Dartmouth, Canada). All data were collected using

GeoSpectrum M36-V35–100 hydrophones with a nominal

sensitivity of �165 dB V/lPa. Hydrophones were calibrated

using a G.R.A.S. 42AA pistonphone (G.R.A.S. Sound and

Vibration, Holte, Denmark) before deployment and at

retrieval.

B. Manual data analysis

To evaluate the performance of the detector, manual

analysis was performed to create a truth data set, consisting

of minke whale vocalizations mixed with local noise. The

Automated Data Selection for Validation (ADSV) algorithm

[based on capturing the distributions of the number and

types of automated detections per unit time (the unit of time

for analysis relies on how the data were recorded, merged,

or split) in the full data set (Kowarski et al., 2020)] was

used to select a sample of acoustic files that represent the

diversity of acoustic conditions in the data for manual

review. These files were fully analyzed by a trained analyst

using PAMlab (JASCO Applied Sciences, Dartmouth, NS,

Canada). The analyst drew annotation boundaries to include

the entire vocalization in both time and frequency. Figure 1

depicts an example of a file containing minke whale pulse

trains from the SAV site on 7 February 2018 at 03:35 (UTC)

that was fully annotated by the analyst (yellow boxes).

C. Automated data analysis

Here, a new automated algorithm for detecting minke

whale pulse trains was developed to find both strong vocaliza-

tions (from whales close to the hydrophone that were recorded

with high amplitudes in the data) and faint vocalizations (from

whales further away from the recorders). The strong and faint

vocalizations have different characteristics, in particular, pulse

train duration, for multiple reasons including attenuation and

overlapping arrivals of calls from multiple individuals. Since

the detectors use these characteristics to separate vocalizations

from false alarms, the detector first detects strong vocalizations

and then searches for faint ones to improve the probability of

detecting the whales.

This algorithm requires two parameters that may

depend on local conditions: the strong and faint analysis

window durations (WS and WF). These parameters are

employed to analyze the signals and their energy levels in

each window, which is used to detect the desired signals

from undesired ones. For this study, we obtained these val-

ues from the mean duration of strong and faint pulse trains

of the manually analyzed data. A duration of WS ¼ 20 s was

TABLE I. Deployment information at the outer continental shelf (OCS) of

the North American east coast.

Station Name Abbreviation Location Depth (m)

Virginia Inter-Canyon VAC 37.246� N–74.514� W 212

Charleston Bump CHB 32.070� N–78.374� W 404

Jacksonville JAX 30.493� N–80.003� W 317

Hatteras South HAT 35.200� N–75.020� W 296

Savannah Deep SAV 32.042� N–77.348� W 790

Blake Escarpment BLE 29.251� N–78.351� W 872

Wilmington WIL 33.585� N–76.451� W 461
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used for the strong vocalizations and WF¼ 8 s was

employed for the faint pulse trains. Since the pulse train

durations for strong/faint signals can be longer or shorter

than the mean values (20 s and 8 s), the detector used 5 s

and 70 s for the minimum and maximum pulse train dura-

tions, respectively [e.g., see the pulse train duration of the

second strong minke whale (SMW) in Fig. 1]. A block dia-

gram of the algorithm is shown in Fig. 2.

To count the number of pulse trains per file, raw data

were first bandpass filtered to remove energy not associated

with the minke whale pulse trains. While the pulse train

energy peaks in the 50–300 Hz range (Risch et al., 2014b),

bandpass filtering in the range of 120–400 Hz better

removes environmental noise and sounds from other species

while preserving the energy from the pulse trains. The lower

cut-off frequency of 120 Hz decreases the proportion of

false positives from vessels and thus, improves the detection

results. The upper cut-off frequency of 400 Hz was selected

based on the bandwidth of the manual analysis results. The

bandpass filter was a minimum-order finite impulse response

filter and performs zero phase filtering with a stop band

attenuation of 60 dB (designed in MATLAB, Natick, MA).

The detector identifies pulse trains by detecting consec-

utive periods of high amplitudes interspersed with periods

of low amplitudes. The threshold for high amplitude signals

is adaptively set for each data file. To find the threshold, the

data were divided into windows, each WS seconds long, and

the peak sound pressure levels in each window was com-

puted. The peak values were then sorted in descending

order. The mean value of the first n1 peak sound pressure

levels (here n1¼ 5) was found and stored as parameter T1.

The mean value of the lowest n2 peak values (here n2¼ 5)

was stored as parameter T2. Based on the concept of infor-

mation entropy, the threshold for the strong signal (ThreshS)

is calculated as

ThreshS ¼ T2 � log2 1þ T1

T2

� �
: (1)

The number of peaks to average (n1 and n2) depends on

the file length analyzed (here 9 or 11 min) and the length of

the analysis windows (WS, WF). The n1 and n2 parameters

allow the analyst to reduce the proportion of false positives

by moderating the effects of outlier peak sound pressure

levels.

The filtered time series signal was compared to the

threshold ThreshS, and all values below this threshold

(ThreshS) were set to zero. The time duration of consecu-

tive zeros was compared to the inter-pulse interval (IPI,

tIPI) which is between 0.29 6 0.02 and 0.83 6 0.04 s (mean

values 6 SD) (Risch et al., 2013). If the duration was

within the bounds for consecutive minke whale pulses, the

location was considered inside a pulse train; otherwise, the

location was considered outside the pulse train. The num-

ber of pulses (NP) and pulse train duration (T) were com-

pared to the bounds from Risch et al. (2013) and the

manually analyzed data, respectively, and accordingly, the

strong pulse train counter increased by one for each valid

train.

To find the faint pulse trains, all periods that contained

strong pulses were removed from the original time series,

and the process was repeated using WF rather than WS. For

the faint case, the threshold ThreshF is the mean of all peak

sound pressure levels (PFÞ, since there was a slight variation

in the signal amplitudes,

ThreshF ¼ mean PFð Þ: (2)

Figure 1 depicts a 2.5 min window from the annotated

file on 7 February 2018 at 03:42:30 (yellow boxes) overlaid

with detected pulse trains (green boxes) and displayed

PAMlab.

FIG. 1. (Color online) Example of a file from the Savannah Georgia (SAV) site on 7 February 2018 at 03:42:30 (UTC) that was fully annotated by the ana-

lyst (yellow boxes). Detected pulse trains annotated with green boxes overlaid on a 2.5 min section of the same manually annotated data (yellow boxes).

MW on each yellow box stands for minke whale. SMW and FMW on each green box stand for strong and faint minke whales, respectively.
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D. Abundance indices

In recent years, counts of animal vocalizations in PAM

recordings have been used to estimate animal density using

a canonical density estimator equation (Mellinger et al.,
2007; Marques et al., 2009; K€usel et al., 2011; Martin et al.,
2013; Hildebrand et al., 2019),

D̂ ¼ nc 1� ĉð Þ
kpw2P̂Tr̂

: (3)

In this approach, the estimated density of marine mammals

(D̂) is calculated from the number of vocalizations (nc) cor-

rected by the estimated average proportion of false positives

(ĉ), divided by the number of sensors (k), study time (T), the

estimated mean probability of detecting the vocalization in

the area surveyed by each sensor (P̂), the area surveyed

(pw2 where w is the maximum detection radius), and the

estimated vocalization production rate (r̂). In this formula,

nc ð1� ĉÞ=P̂ is the number of detected vocalizations cor-

rected for estimated false positives and estimated detection

probability, hereafter referred to as the estimated abundance

of vocalizations. The estimated abundance of vocalizations

divided by kTr̂ gives the estimated number of marine mam-

mals per unit time and recorder. The last factor, 1=pw2, nor-

malizes the estimated number of animals by the detection

area to obtain a density of animals. Sometimes, the esti-

mated average proportion of false positives (ĉ) is called a

false positive ratio; specific issues related to the use of this

parameter are discussed in Sec. II D [refer to Eqs. (7) and

(8)]. Estimating the various parameters in Eq. (3) is complex

and requires substantial levels of data collection and analy-

sis or simulation and modeling (K€usel et al., 2011; Martin

et al., 2013).

The probability of detection of a marine mammal

mainly depends on its distance from the sensor. The follow-

ing equation is used to estimate the probability of detection

(Marques et al., 2009; K€usel et al., 2011):

P̂ ¼
ðw

0

ĝ yð Þh yð Þdy; (4)

where y is the horizontal distance, ĝ yð Þ is the detection func-

tion, and h yð Þ is the distribution of horizontal distances to

all animals, detected or not.

The estimated probability of detecting an animal can be

estimated by a few methods. Possible ways to estimate this

parameter include employing hydrophones capable of local-

izing the vocalizations or using tagged animals to know how

far they are from the recorder when detected. Due to com-

plexity and cost, these methods generally yield small sample

sizes, and thus, P̂ is generally estimated once and treated as

fixed for a full data set (Marques et al., 2012; Martin et al.,
2013). Modeling approaches, such as coupling Monte Carlo

simulations with acoustic propagation models (K€usel et al.,
2011), or bearing estimation and propagation modeling

(Harris et al., 2018), are accessible (although complex)

methods for estimating P̂. However, while they are able to

incorporate a representation for the variability of the local

environment, they are still often used to estimate a single

value for P̂. For example, in Harris et al. (2018), the 90th

percentile of the source distribution and 10th percentile of

FIG. 2. (Color online) Block diagram of the automated detector algorithm. SMW and FMW stand for strong and faint minke whales, respectively.
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the noise distribution were used to define the maximum

detection range, and this detector function was employed to

determine P̂. However, because the noise level fluctuates

over short time scales due to human activities and at daily to

weekly time scales due to weather (Risch et al., 2014a;

Martin et al., 2019), a new estimate of P̂ should be consid-

ered. In the proposed method, the elements of P̂ (the param-

eters that are used to estimate P) that represent the

probability of missed detections are combined with ĉ as a

part of the estimated abundance of vocalizations. The

remaining elements of P̂ [refer to Eq. (3) and Marques

et al., 2009] are replaced with a detectability coefficient (X)

that accounts for noise and acoustic propagation conditions.

The proposed equation for the relative abundance index

Â is

Â ¼ X
nca 1� PFPþ PFNð Þ

Tr̂
; (5)

where X is the detectability coefficient, nca is the total num-

ber of pulse trains obtained from the automated detection

algorithm, T is the study time, r̂ is the estimated vocaliza-

tion production rate, PFP is the proportion of false positives,

and PFN is the proportion of false negatives. Note that if X
is set to 1, Eq. (5) estimates the number of audible minke

whales. The rationale for using PFP, PFN, a definition for X,

and the appropriate value for r̂ is discussed below.

In Eq. (3), vocalization counts are converted to absolute

abundance using a known vocalization rate, r̂ . These rates

are often determined from acoustic tag data (DTAGs)

(Johnson and Tyack, 2003). For minke whales, Risch et al.
(2014b) provided the vocalization rate as the mean with a

minimum and maximum value which would lead to esti-

mates of absolute abundance with a wide prediction interval.

However, for the relative abundance index developed here,

one only requires the mean value of 48.6 (vocalizations/h)

½r̂ ¼ 48.6 6 27.5 (vocalizations/h) (mean 6 SD), any value

for r̂ would work since it simply scales the final result

(Risch et al., 2014b)]. This value could even change as a

function of time per day for each season and vocalization

type (Delarue, 2008; Wang et al., 2015; Garcia et al., 2019).

Further explanation is in the Discussion section.

The total number of pulse trains (nca) is

nca ¼ ncas þ ncaf ; (6)

where ncas and ncaf represent the number of pulse trains for

the strong and faint signals, respectively. The proportion of

false positives (PFP) may be calculated as

PFP ¼ nFP

nca
; (7)

where nFP is the total number of false positives across all

annotated files and similarly, nca is the total number of pulse

train vocalizations identified by the automated detector. To

account for the elements of P̂ that represent the probability

of missed detections, we include the proportion of false neg-

atives (PFN) as a second corrector to nca,

PFN ¼ nFN

ncA
; (8)

where nFN is the total number of false negative detections

and ncA is the total number of pulse trains obtained from the

manual analysis.

It should be mentioned that PFP is different from false

positive rate (FPR), defined as

FPR ¼ nFP

nFP þ nTN
; (9)

where nFP and nTN are the number of false positives and true

negatives, respectively. Since finding nTN is infeasible, PFP
was used in this study.

The elements of P̂ and w that account for noise and

acoustic propagation conditions in Eq. (3) are replaced with

the detectability coefficient (XÞ in Eq. (5). The proposed

approach to account for variable noise levels is similar to

the concept of listening range reduction [LRR, reductions in

animal communication space/range (communication space

is used when the volume or area surrounding the animal is

considered and the term “range” is used for a single dis-

tance) (Pine et al., 2020)]. Calculating the communication

space/range of a marine mammal requires knowledge of its

vocalizing source level, the noise level, and the propagation

loss. However, computing the listening range reduction

requires only the change in noise level (D) and the geomet-

ric spreading coefficient [N, Eq. (7), Pine et al. (2018)],

LRR %ð Þ ¼ 100 1� 10� D=Nð Þð Þ: (10)

For assessing LRR, D is the difference between the cur-

rent sound level and a masking noise level. Here, we are

interested in finding the change in available detection range

for sounds at a recorder, so Eq. (10) was slightly modified,

giving the detectability coefficient as

X ¼ 10D=N; (11)

where D is the change in sound level defined as the differ-

ence between the current received sound level and the nth

percentile level of the sound pressure level over the entire

recording duration. The 10th percentile of the distribution of

measured sound levels was selected as the realistic noise

floor based on experience for the sites under study (see

Fig. 3) and is the same threshold employed in Harris et al.
(2018). N is the geometric spreading loss coefficient value

that ranges between spherical spreading (N ¼ 20) and cylin-

drical spreading (N ¼ 10) (Ainslie et al., 2014); an interme-

diate term appropriate for many environments of N ¼ 15 dB

was used in this analysis (Risch et al., 2014b). The noise

level data were 1 min sound pressure levels, summed over a

frequency band encompassing the six decidecade bands at

center frequencies of 125, 160, 200, 250, 315, and 400 Hz,

that match the frequencies used for detection (see Sec. II C).

The noise levels varied by station (Fig. 3) and in time, which

demonstrates why the detectability coefficient needs to
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adapt to background noise levels. To suppress the short-term

effects of passing vessels and focus on variations due to

weather, the median value of the detectability coefficient per

day for each station was used in this analysis.

III. RESULTS

A. Detector performance

To evaluate the detector performance, all pulse trains in

1% of the Savannah Deep (SAV) (see Table I) 2017–18 dataset

and each of the 2018–19 datasets were manually annotated,

yielding a wide range of pulse train counts (Table II).

The signal-to-noise ratio for each annotation for SAV

2017–18 was computed by summing the energy over the

signal bandwidth for the annotation (signal) and an equal

time period just before and just after an annotated pulse train

(to define the noise, ratios shown in Fig. 4). Negative SNRs

occurred when there was another pulse train in the noise

time window before or after the annotation (e.g., Fig. 1).

To estimate the performance of our detector, the preci-
sion (positive predictive value), recall (sensitivity or true

predictive rate), and F1 score (the harmonic mean of the pre-

cision and recall) indicators were calculated based on the

following equations (Hand and Christen, 2017):

Precision ¼ nTP

nTP þ nFPð Þ
; (12)

Recall ¼ nTP

nTP þ nFNð Þ
; (13)

F1 ¼ 2� Precision� Recall

Precisionþ Recallð Þ : (14)

Overall, the precision, recall, and F1 score of the detec-

tor against the SAV data for the period of November

2017–June 2018 were 0.8, 0.8, and 0.8, respectively. The

value for PFP in Eq. (7) was 0.15 and the value for the false

negative scaling parameter (PFNÞ in Eq. (8) was 0.22. The

values for the other stations are illustrated in Table III. It

should be mentioned that high values of PFP in Table III are

due to rarely observed/detected minke whales at the stations,

such as VAC and HAT.

B. Relative abundance index estimator

Equation (5) includes PFN, which diverges from the

typical canonical Eq. (3). To assess whether PFN improved

FIG. 3. The distribution received 1 min sound pressure levels over a fre-

quency band encompassing the 125–400 Hz decidecade bands at each sta-

tion for December 2017–June 2018. The noise levels varied by station and

in time; hence, the detectability coefficient was developed to allow a com-

parison across stations. In this figure, the boxes show the interquartile range

(i.e., the middle half of the distribution). The horizontal line in the box is

the median value. The vertical lines show the range of values for 25% of

the data above or below the middle half. The dots above or below the line

indicate outlier values.

TABLE II. Manual analysis of the outer continental shelf (OCS) of the

North American east coast minke whale data. The total number of detected

pulse trains and the total number of files annotated as determined by the

ADSV algorithm per station are presented as nt and n, respectively.

Station name Time period nt n

SAV November 2017–June 2018 780 137

VAC November 2018–October 2019 2 113

CHB November 2018–October 2019 154 173

HAT November 2018–October 2019 26 166

SAV November 2018–October 2019 390 168

BLE November 2018–October 2019 248 181

WIL November 2018–October 2019 218 167

FIG. 4. Distribution of the manual annotations as a function of signal-to-

noise ratio (SNR) at the Savannah Georgia (SAV) site.

TABLE III. Proportion of false positive (PFP) and false negative (PFN) val-

ues at outer continental shelf (OCS).

Station Name Time period PFPa PFNa

VAC November 2018–October 2019 0.80 0.00

CHB November 2018–October 2019 0.70 0.37

HAT November 2018–October 2019 0.96 0.4

SAV November 2018–October 2019 0.17 0.22

BLE November 2018–October 2019 0.36 0.17

WIL November 2018–October 2019 0.51 0.30

aPoor results at some stations for PFP and PFN are discussed in Sec. IV.
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algorithm performance, the estimated number of audible

minke whales (N̂M) was compared using different versions

of Eq. (6) (Fig. 5). For simplicity in the comparisons, the

detectability coefficient X was set to 1. Three versions of

Eq. (5) were evaluated: (1) N̂MA was computed using the

number of annotated calls (which served as a reference

value), (2) N̂Ma1 was computed using the number of auto-

mated detections and setting the proportion of false negative

(PFN) to 0, and (3) N̂Ma2 was computed using the number of

automated detections and including PFN. The analysis was

performed on the 137 fully annotated files from SAV for the

period from November 2017–June 2018. The root mean

square errors (RMSE) [Eq. (15)] were used to compare per-

formance of the methods to the estimated number of audible

minke whales (N̂MA), where a lower RMSE indicates better

performance (i is a sum over all files analyzed),

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

N̂Mai � NMAi

� �2

n
:

vuuut
(15)

Both versions of Eq. (5) closely tracked the manual annota-

tion results (Fig. 5), but the version with PFN was preferred

with a lower RMSE of 0.35 compared to 0.38 without PFN.

The result in Fig. 5 shows that adding PFN improves the

estimated number of minke whales. Therefore, separating

the signals into strong and faint and subsequently, consider-

ing faint signals, decreases the number of missed detections

and makes it closer to the true value, which eventually pro-

vides a better estimate for abundance index.

Equation (5) was applied to the full 2 y dataset at site

SAV. The 8 d moving average relative abundances of minke

whales using the daily median number of audible whales

and detectability coefficients are illustrated in Fig. 6. The

median value was selected rather than the mean for each

day as it suppressed false positives from the detector and

thus, avoided overestimating the relative abundance of

minke whales. The values of PFP and PFN in Table III were

used in the calculation.

To summarize the results and provide a spatial and tem-

poral interpretation, the relative abundance index was

summed by month per year and the average of 2 y was

calculated and plotted as variable sized bubbles by station

(Fig. 7). Minke whales are present in deep waters of the

OCS from December through April and have a peak concen-

tration near the site offshore of Savannah Georgia (SAV) in

both years. They also show a high concentration at Blake

Escarpment (BLE) station and are present at Jacksonville

(JAX), Charleston Bump (CHB), and Wilmington (WIL).

They were rarely present at Hatteras (HAT) and Virginia

Inter-Canyon (VAC). The results also indicate a northward

migration starting in February through April.

IV. DISCUSSION

The goal of this work was to propose a method for con-

verting marine mammal vocalizations detected in passive

acoustic recordings at single hydrophones into a comparable

index of relative abundance. The method was demonstrated

using pulse trains of North Atlantic minke whales. Little is

known about how minke whale pulse train vocalizations

relate to the age, sex, season, and location of the whales

(Risch et al., 2014b), and thus, the detection of audible

whales is a relative abundance estimate.

Results show a distinct spatial distribution that evolved

in time. These may be compared to the density surface mod-

els for the minke whales in the OCS from Roberts et al.
(2016). The density surface models indicate an even distri-

bution of minke whales throughout the ADEON area in win-

ter, with very few present in the summer months (Duke

University, 2021). The ADEON data show a gradient with

fewer whales to the west and north of the study area in win-

ter, a movement north towards the end of the detection

period, and replicates the density surface models that show

no presence in the summer months. The northward move-

ment also agrees with the previous minke whale presence

FIG. 5. Estimated number of audible minke whales using annotations and

the automated detector algorithm at SAV. N̂MA was computed using the

number of annotated calls, N̂ Ma1 was computed using the number of auto-

mated detections and setting the proportion of false negative (PFN) in Eq.

(5) to zero. N̂Ma2 was computed using the number of automated detections

including PFN.

FIG. 6. (Color online) An 8 d moving average for relative abundance index

of audible minke whales for 2 y at the seven stations using Eq. (5).
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trends from PAM data (Risch et al., 2013). The cessation of

detections in April is likely due to a northward movement of

the animals, but also a change in vocalization patterns as the

minke whales stop their wintertime mating behaviors and

move north to feed for the summer.

There are many refinements and conventions that will

need to be developed for this method to become sufficiently

standardized so that it can be used for management and con-

servation. Many of these refinements/conventions will still

require extensive research to quantify mammal behaviors. A

few of those issues are introduced here in the following

paragraphs.

In this analysis, we employed the mean vocalization

rate per hour from Risch et al. (2014b) to convert the vocal-

izations counted into an estimated number of audible

whales; however, as we are proposing a relative abundance

index, any value for r̂ would work since it simply scales the

final result. To apply the method to different time periods

and species, it is important to arrive at an agreed-upon stan-

dard relative number of vocalizations per unit time in differ-

ent seasons that can be employed by all research groups.

This value could even change as a function of time per

day for each season and vocalization type (Delarue, 2008;

Wang et al., 2015; Garcia et al., 2019). In the present analy-

sis, it is likely that a different vocalization rate should be

employed in summer than in winter, but further research is

needed to determine the relative occurrence of pulse trains

in different seasons and habitat areas.

Here, we applied a constant value for the attenuation

factor (N) in Eq. (11) since we had a priori knowledge that

propagation conditions were in a broad sense similar for all

the ADEON sites (based on water depths of 200–900 m, and

ranges of interest at most 30 km). However, it is simple to

imagine PAM survey designs where this would not be the

case, such as recorders located on the shelf, on the continen-

tal slope at the sound-speed axis, and others in deep water

far below the sound-speed axis (e.g., Delarue et al., 2018).

To accommodate these differences, site specific values for N
could be employed. Further work is needed to make recom-

mendations on how to select a value of N for different situa-

tions (Reeder and Chiu, 2010; Erbe et al., 2012; Ainslie

et al., 2014; Pine et al., 2020). There are other situations in

which it may make sense to reduce the attenuation factor by

a fixed multiplier, such as if a recorder were located very

close to a steep shelf break such that it could only hear over

one-half of a circle. Moreover, the D parameter, which is the

FIG. 7. (Color online) The relative abundance index at the ADEON sites in a) December, b) January, c) February, d) March, and e) April. The maximum rel-

ative abundance index values were 94, 113, 142, 127, and 32 for December, January, February, March, and April, respectively. The minimum value of 0 rep-

resents the absence of minke whales in March, April, and February at VAC, JAX, and HAT, respectively. The best available minke whales density results

from Roberts et al., 2016 were 731, 715, 691, 750, and 1498 in December, January, February, March, and April, respectively, at the east coast (Duke

University 2021). The peak concentrations were towards south at the ADEON sites in December–March and was towards north in April.
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change in sound level, is an important multiplier required

for any sound level–based method of abundance/density

estimation. This parameter can be as varied as any event,

such as noise or signals produced by the animals, that might

be detected acoustically by our deployed hydrophones.

The pulse train algorithm used in this analysis is fast,

straightforward, and flexible. It was well suited to the detec-

tion of the choruses of minke whale pulse trains that often

lasted for hours to days at a time. The pulse trains were also

separated into two groups: faint and strong pulse trains.

Faint signals possess different characteristics than strong

ones, and a detector that can account for this variation

improves the estimate of the number of pulse trains.

Overlapping vocalizations between singers (e.g., Fig. 1)

complicated the assessment of detector performance and led

to the recommendation to include the proportion of false

negatives as a parameter in the abundance equation. We

also expect that the false negative parameter will be impor-

tant when this method is applied to non-chorusing species,

such as North Atlantic right whales, and when an algorithm

suffers from a high proportion of false negatives.

Occasionally, the algorithm generated large numbers of

false positives over short periods of time, for example, when

vessels passed by. In the current situation, we know that

when minke whales are present, vocalizations are detected

for extended periods. Therefore, we choose to use the

median number of vocalizations per day as our vocalization

count as it was able to greatly reduce the influence of the

false positives; similar results have been employed to reduce

false alarms during real-time monitoring with gliders

(Baumgartner et al., 2013; Kowarski et al., 2020). A differ-

ent approach would be required if the false positives could

be more common than true positives. North Atlantic right

whale (NARW) is a species where this occurs, since both

vessels and humpback whales are common false triggers for

the NARW upcall detectors. In such cases, either improve-

ments in the detector or human-in-the-loop protocols are

employed (Kowarski et al., 2020).

Long minke whale pulse trains occur at regular intervals

and cause an overlapping in frequency and timing of vocal

activity, as overlapping vocalizations are likely from differ-

ent individuals. This variable vocalization structure, associ-

ated with high underwater noise levels, proved to be a major

challenge for detection algorithms (Risch et al., 2013).

Here, with low proportions of false negatives, and a rela-

tively reasonable low proportion of false positives, at sta-

tions in where minke whales are abundant (see the Results

and Discussion sections), the pulse train detector used in

this study performed well for our spatial occurrence patterns

in the survey area.

The performance of the algorithm could be improved

by including other vocalizing rate parameters that identify

the different types of North Atlantic pulse train-calling

minke whales. These could include start and end inter-pulse

interval (IPI) (s; averaged over the first and last 20% of

pulses, respectively), change in pulse rate [1/IPI (1/s); dif-

ference of averaged values for first and last 20%], and

change in frequencies over time (Hz; difference of averaged

first and last 20% mean spectrum measures). Future work is

needed on minke whale call types, individual calling behav-

ior, and source levels in the OCS. This information is essen-

tial for interpreting the social interaction of minke whales

and estimating their numbers. To significantly improve

abundance estimates for this cryptic species, is it necessary

to attempt a better insight when determining the strength

and weaknesses of the approach. For instance, determining

what parameters must be added to the detector to develop its

performance to enhance the results, or how to improve the

results through obtaining the relative abundance index of

minke whales by separating strong and faint pulse trains,

would be beneficial.

The original canonical Eq. (3) and the proposed

extension/simplification in Eq. (5) both depend on the per-

formance of automated detectors that count marine mammal

vocalizations. The minke whale vocalizations do not have

standardized detectors; hence, the development of a new

one was warranted. Detectors that work well for one loca-

tion often need to be tuned to work in another, or they will

have a substantially different performance (see Table III).

Thus, we must expect variable performance from detectors,

that different groups will use different detectors, and that

even within research groups, detectors will evolve. To com-

bine an abundance index from different research groups,

years, and locations, we need a standardized manner for log-

ging detections and describing detector performance. This is

analogous to the concepts of collecting standardized data

about visual detections and measuring the detection function

“g” during line-transect studies (Roberts et al., 2016).

V. CONCLUSION

To implement and enhance management and conserva-

tion policies for marine mammals, reliable and effective

abundance estimates are necessary. Some density/abundance

estimation methods for marine mammals that are based on

passive acoustic detections employ propagation modeling to

estimate the area over which animals may be heard.

Accurate acoustic propagation modeling depends on envi-

ronmental data that are difficult to obtain, and hence

requires highly specialized software and expertise. These

resources are not available to many practitioners. Therefore,

this study aimed to demonstrate a new method for obtaining

a relative abundance index from single hydrophone data that

does not need source level and propagation modeling. The

method was demonstrated using North Atlantic pulse train-

calling minke whales.

A dataset from the Atlantic Deepwater Ecosystem

Observatory Network (ADEON) located along the U.S. east

coast outer continental shelf (OCS), was used for the effort.

The results facilitated the comparison of the relative impor-

tance of the seven sites, with the deep sites at SAV and BLE

being preferred. Temporally, the results showed the pulse

train-calling minke whales present from winter to mid-

spring. This agrees with the known wintering of pulse
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train-calling minke whales in southern waters (Risch et al.,
2014a).

Future work is needed to capture minke whale vocaliza-

tion types, individual vocalizing behavior, and source levels

in the OCS more accurately. This information is essential

for interpreting the social interaction of minke whales and

estimating their numbers. Application of the method with

different species and integration of the method with direc-

tional data will also need further investigation to confirm the

usefulness of the approach.
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