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A B S T R A C T   

Estimating the age composition of a fish population is a critical first step in all stock assessments that apply age- 
structured models. Often this is done through the use of an Age Length Key (ALK), which links a subsample of fish 
that have had their ages determined to those that have only had their lengths measured in order to obtain an 
estimate of the age structure of the entire sample. ALKs can suffer from data gaps and sampling artifacts and are 
limited in both how they can reflect spatial variability and how spatial information can be incorporated. 

We propose a novel spatial ALK model that uses an approximation of a Gaussian Field and has the ability to 
account for physical barriers (e.g. islands, coastlines) in the study area. Our approach is compared with a pre-
viously suggested spatial ALK model as well as non-spatial approaches using both real and simulated survey data. 
We find that spatial ALK approaches reduce errors in stratified estimates of abundance at age over non-spatial 
approaches and that incorporating physical barriers can deliver more realistic results.   

1. Introduction 

Stock assessments are tools that can allow us to understand the 
overall health of a fish stock. They enable quantifying the abundance, 
age and length compositions of the population and determine in-
dications of whether the stock is facing overexplotation (Worm et al., 
2009). They play a key part in helping to rebuild and maintain fisheries 
around the world (Worm et al., 2009; Hilborn and Ovando, 2014). Stock 
assessment methods have evolved from simple methods based only on 
catch data to models that integrate additional sources of data, to modern 
state-space approaches (Aeberhard et al., 2018) that allow for increasing 
levels of inference and precision. 

Age structured methods can greatly simplify stock assessment 
models as ages link directly to the numbers of survivors in each year. 
However, for most species accurately and easily determining the age of a 
fish can be a time consuming and expensive process that often requires 
an expert counting the number of growth rings on an otolith or similar 
procedure. Measuring the length of a fish is much easier, less lethal and 
it can be done on site for low cost. In order to take advantage of the 
benefits of age structured methods, approaches for estimating the age of 
a fish from its cheaply measured length are commonly used, like Age 
Length Keys (ALKs) (Aanes and Vølstad, 2015). 

ALKs have been used to estimate the age of fish for over 80 years 

(Fridriksson, 1934). They are based on the idea that the proportion of 
fish at age a, pa is equal to 

pa =
∑K

i=1
kipa|i (1)  

where i indexes discrete length bins i = 1 to K and ki is the proportion of 
fish in length bin i, pa|i is the observed conditional probability (or pro-
portion) of being age a given membership in length bin i. An ALK is then 
simply a matrix of proportions of fish at age a given length i. To convert 
the sampled length frequencies to estimates at age, the length fre-
quencies are multiplied by the ALK to get the numbers at age. An 
example of a traditional ALK along with an example of a smooth model 
based ALK is shown in Table 1. ALKs are often constructed separately for 
different covariates such as sex, time of year and gear type depending on 
the species and application. Traditional ALKs can easily suffer from data 
gaps resulting in some fish not being assigned an age estimate. ALKs also 
suffer from low sample numbers particularly for rarer older age classes. 
An example of such a sampling artifact can be seen in Table 1a where 
any fish assigned to the 49 cm length bin will automatically be assumed 
to be age 9 despite the existence of shorter older fish. 

Smooth ALKs have non-zero proportions at every possible length bin 
ensuring that all fish are assigned an age estimate. Kvist et al. (2000) 
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Table 1 
Examples of traditional and smoothed ALKs. Columns represent ages and rows define three centimetre length bins. Zeros are omitted for readability.  

(a) A traditional ALK. Any fish measured to be less than 4 cm or greater than 52 cm would by missed by this ALK.  

1 2 3 4 5 6 7 8 9 10 

1           
4           
7 1.000          
10 0.933 0.067         
13 0.200 0.767 0.033        
16  0.567 0.433        
19  0.100 0.700 0.200       
22   0.333 0.533 0.133      
25   0.033 0.433 0.467 0.067     
28    0.200 0.400 0.367 0.033    
31    0.033 0.167 0.467 0.333    
34     0.033 0.367 0.433 0.100 0.067  
37     0.067 0.100 0.400 0.267 0.167  
40      0.036 0.107 0.393 0.357 0.107 
43      0.071  0.357 0.500 0.071 
46        0.286 0.429 0.286 
49         1.000  
52           
55            

(b) An example of a smooth ALK. This ALK was constructed from a CRL model with length as the sole covariate using the same age-growth data as was used to construct the ALK in Table 1a. All lengths are represented and there is no longer any 
possibility of missing fish at the more extreme length bins. Effects of sampling artifacts like all 49 cm fish being considered age 9 despite shorter fish being age 10 are reduced. Zeros are again omitted for readability.  

1 2 3 4 5 6 7 8 9 10 

1 1.000          
4 1.000          
7 1.000          
10 0.990 0.010         
13 0.064 0.918 0.018        
16  0.612 0.382 0.006       
19  0.047 0.798 0.150 0.004      
22  0.002 0.290 0.602 0.101 0.005     
25   0.031 0.473 0.408 0.083 0.005    
28   0.003 0.139 0.455 0.337 0.065 0.001   
31    0.027 0.209 0.476 0.273 0.010 0.005  
34    0.005 0.062 0.326 0.475 0.081 0.048 0.003 
37    0.001 0.016 0.146 0.346 0.265 0.203 0.023 
40     0.004 0.053 0.115 0.383 0.378 0.067 
43     0.001 0.018 0.026 0.370 0.458 0.127 
46      0.006 0.005 0.314 0.471 0.203 
49      0.002 0.001 0.255 0.443 0.299 
52      0.001  0.201 0.389 0.409 
55        0.157 0.319 0.524  
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suggested the possibility of generating smooth ALKs using a Continua-
tion Ratio Logit (CRL) model. Smooth ALKs have been applied before to 
lesser sandeel, (Rindorf and Lewy, 2001) North Sea haddock, (Stari 
et al., 2010; Berg and Kristensen, 2012) cod, herring and whiting (Berg 
and Kristensen, 2012). They can also mitigate the effects of the sampling 
artifacts mentioned above, demonstrated in Table 1b where the proba-
bility of being a particular age given a length of 49 cm is more suitably 
spread across nearby age classes and not just associated with age nine. 

Many fish species are known to aggregate in different locations and 
may be in different spots at different stages of their lifecycles (Parrish, 
1999). They may also have differing levels of growth depending on 
location (Punt et al., 2015). Incorporating spatial information into 
traditional ALKs requires dividing the study area into subareas. The 
greater the number of subareas the more sparse the data, the more likely 
gaps and other issues are to arise in the ALK resulting in more missed or 
incorrectly aged fish. Berg and Kristensen (2012) presented a way of 
constructing ALKs for point referenced data using a Generalized Addi-
tive Model (GAM) and thin-plate regression splines. They found better 
internal and external consistencies for age based survey indices when 
using spatial ALKs, in addition to observing differences in ALKs con-
structed in different areas. 

However, the method of Berg and Kristensen (2012) does not ac-
count for boundaries posed by physical barriers such as landmasses that 
may be present in the study area. These oversimplifications results in 
predictions that smooth under landmasses. That is, the spatial part of the 
model will ignore any landmasses and predicted probabilities will ignore 
marine distance which may result in poor estimates for samples on 
opposite sides of a large landmass for instance. This could be a problem 
if for example a large group of young fish inhabits a bay as smoothing 
under landmasses may artificially increase the probability of young fish 
living on the other side of the bay. 

The spatial ALK approach presented here addresses the problem of 
smoothing over landmasses by using an approximation of a Gaussian 
Random Field (GF) that has support for physical barriers (Bakka et al., 
2019). Desirably it still allows ALKs to be constructed at any location 
within the study area. Approximations of GFs have previously been 
proposed to help model spatial indices of abundance (Thorson et al., 
2015; Thorson and Barnett, 2017), species distribution (Bakka et al., 
2016) along with other non-marine uses such as global temperature data 
(Lindgren and Rue, 2011). 

In Section 2 our spatial ALK is fully described and all necessary 
background knowledge provided. In Section 3.1 the proposed Gaussian 
field model with barrier support (GFB) is tested using simulated survey 
data to determine the benefit of using a spatial ALK instead of one that 
ignores all spatial structure. It is tested alongside a traditional ALK, a 
non-spatial CRL model and a spatial GAM ALK implementation. Finally 
in Section 3.2, the four methods are applied to two real datasets (Cod 
and American Plaice) from Fisheries and Oceans Canada (DFO)’s multi- 
species bottom trawl Research Vessel (RV) survey. The method proposed 
is implemented as an R package called barrierALK and is available on 
Github (https://github.com/jgbabyn/barrierALK). 

2. Methods 

2.1. ordinal regression and continuation ratio logits 

An ALK can be constructed using any classifier capable of handling 
multiple age classes and returning probabilities of a fish with a partic-
ular set of covariates (e.g. male, caught using gillnet, etc.) belonging to 
each age class. The ALK is simply those probabilities for every set of 
observed covariates. Ages naturally have an ordering associated with 
them, a seven year old fish must have first been a six year old fish and 
before that a five year old fish and so on. Ordinal regression can handle 
ordered categorical data and return class probabilities (Agresti, 2003). It 
is also possible to incorporate spatial structure directly into ordinal 
regression models through the use of splines or random fields. This is not 

the case for some alternative multi-class classifiers like Classification 
and Regression Trees (CARTs). A number of different ordinal regression 
methods exist such as cumulative logits, adjacent-category logits, etc. 
Continuation Ratio Logits (CRLs) are one method that offers a few ad-
vantages (Agresti, 2003) (Harrell, 2014, pp. 311–312, 321–322). 

CRLs models have the advantage over other ordinal regression 
methods in that it is very easy to remove or loosen the proportional odds 
assumption. This allows for all covariates or some subset of covariates to 
be able to freely vary with every level of a category (Harrell, 2014, pp. 
319–322). In addition CRL models can be represented using 𝒜 − 1 
binomial models which allows their fitting using any software capable of 
performing logistic regression (Agresti, 2003). 

Suppose the ith aged fish is observed to be age a, and there are 𝒜 total 
ages. The CRL for the ith observation with the corresponding vector of 
covariates, xi, that must of course include length along with others (e.g. 
sex, gear type, etc.), is 

logit(πa[xi]) = P(Xi = a|Xi ≥ a) (2)  

where 

πa[xi] =
pa[xi]

pa[xi] + ⋯ + pA[xi]
(3)  

and pa is the proportion of fish at age a. In other words, the CRL for the 
ith observation is the probability of being age a given it is at least age a 
or greater (Agresti, 2003). 

The unconditional probabilities P(Xi = a) can be found by 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

πa[xi], a = R

πa[xi]
∑a− 1

R
(1 − πi[xi]) R < a < A

1 −
∑A− 1

R
(1 − πi[xi]) a = A

(4)  

where R is the first age in the model, and A is the last. In aging data R can 
refer to the age of recruitment to the survey or fishery, A identifies a plus 
group or the final age involved (Berg and Kristensen, 2012). In the 
models presented here, length has an individual parameter for each age 
group which allows for greater flexibility. This is known as relaxing the 
proportional odds assumption. 

2.2. Random fields 

Random fields are collections of random variables, {X(s), s ∈ S}. S is 
the set of indices and s is the index (Ross, 2014). Typically a set of 
indices is a set of locations, but could also incorporate time. The index 
set S can be a discrete set, continuous, finite or infinite. The random 
variables in random fields can follow any of the typical distributions 
used such as Gaussian, Student’s t, Gamma, etc. Gaussian Random Fields 
(GFs) are those in which all the X(s) are normally or Gaussian distributed 
(Rue and Held, 2005). A GF can be specified by its mean function μ(s) 
and covariance function Cov(s, t), s, t ∈ S. A popular choice of covariance 
function for spatial data is the Matérn covariance function, 

c(s, t) = σ2
u
21− ν

Γ(ν)

(
̅̅̅̅̅
8ν

√ ||s − t||
r

)

Kν

(
̅̅̅̅̅
8ν

√ ||s − t||
r

)

(5)  

where Γ is the Gamma function, ν is a smoothness parameter, Kν is the 
modified Bessel function of the second kind with order ν, r is the range 
parameter which is the spatial distance when the correlation is ≈0.13, σu 
is the marginal standard deviation (Bakka et al., 2018) and ||s − t|| is the 
distance between two points. 

Using a GF directly is not computationally tractable for large prob-
lems. The cost to factorize the resulting dense covariance matrix is cubic 
in time. As a result a number of alternative approaches to try and get 
around the high computational cost have been proposed. Gaussian 
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Markov Random Fields (GMRFs) are GFs with the Markov property, that 
is 

P(si|{sj : j ∕= i}) = P(si|xj : j ∈ 𝒩 i) (6)  

where the neighbours 𝒩 i to the location si are the points {sj, j ∈ 𝒩 i} that 
are close or connected to si. Conditional on its neighbours the mean at a 
location is independent of all other locations. The Markov property 
ensures that the precision matrix (inverse of the covariance matrix) is 
sparse. The sparsity of the precision matrix reduces the memory needed 
and overall computational time required (Rue and Held, 2005). How-
ever GMRFs have traditionally been limited for spatial applications as 
they require that areas be broken into predefined regions beforehand. 
This may be difficult to do in practice and it also limits the spatial res-
olution available. 

2.2.1. Gaussian random field approximation using stochastic partial 
differential equations 

Lindgren and Rue (2011) found an explicit link between GFs and 
GMRFs when using a Matérn covariance function. A valid positive 
semi-definite covariance matrix is the result of the solution of a set of 
Stochastic Partial Differential Equations (SPDEs), which creates an 
approximation of a GF using a GMRF. This allows the benefits of 
modelling as a GF with the computational speed of a GMRF. 

The SPDE method requires creating a Delaunay triangulation or 
mesh of the study area such as through R-INLA’s inla.mesh.2d 
function, which can then be used to generate the matrices that are used 
for the Finite Element Method (FEM) solution to the SPDE. The Matérn 
field is the solution u(s) to the SPDE 

u(s) − ∇⋅
r2

8
∇u(s) = r

̅̅̅
π
2

√

σu𝒲(s) (7)  

assuming that the smoothness parameter ν = 1, where ∇ is defined as 
(

δ
δx

)
, r is the range parameter, σu is the marginal standard deviation of 

the model component u, 𝒲(s) refers to white noise. The approximation 
to the spatial GF ũ(s) is distributed 𝒩(0,Q(σu, r)− 1

) with Q(σu, r) is the 
precision matrix that results from the FEM solution to the SPDE with 
hyperparameters σu and r. 

The mesh helps ensure that the resulting precision matrix is sparse as 
well. Every node in the mesh is an element in the resulting covariance 
matrix. The more nodes in the mesh, the denser it is and the better the 
approximation to the GF. This comes as a tradeoff, as computational 
time increases non-linearly with the addition of more nodes. 

Recently Bakka et al. (2019) extended the SPDE GF approximation 
method of Lindgren and Rue (2011) to support physical barriers in a 
spatial GF such as the problem presented by coastlines. Their method 
has several advantages over other proposed methods of incorporating 
boundary information into a spatial model like the soap film smoother 
proposed by Wood et al. (2008). It is robust to the selection of boundary 
polygons, takes similar amounts of computational time and is not 
particularly hard for the applied practitioner to use beyond defining the 
mesh and barrier polygons (Bakka et al., 2019). Under the assumption 
that the smoothness parameter ν = 1, the barrier Matérn field is the 
solution u(s) to the SPDE 

u(s) − ∇⋅
r2

8
∇u(s) = r

̅̅̅
π
2

√

σu𝒲(s) for s ∈ Ωn (8)  

u(s) − ∇⋅
r2

b

8
∇u(s) = rb

̅̅̅
π
2

√

σu𝒲(s) for s ∈ Ωb (9)  

where Ωn is the set of nodes outside the boundary, Ωb is the set of nodes 
inside the boundary, and rb is not a new range parameter but instead a 
predetermined fraction of r. In this case rb = 1

10 r. This has the effect of 
essentially making the decorrelation range close to zero for points that 

fall within the barrier creating the desired boundary properties. Other 
parameters are the same as described above. Further details on solving 
the SPDE for the GF approximation can be found in Lindgren and Rue 
(2011), Bakka et al. (2019) and Bakka (2018). 

Prediction and fitting of points that do not fall exactly on mesh node 
are handled by projector matrix A.. A is also a sparse matrix that has the 
same number of rows as data being predicted or fit and a column for 
every node in the mesh. Every row of A has either one or three non-zero 
entries. If the data point falls exactly at a mesh node then the non-zero 
entry will be 1 at that node’s column. For points not at a mesh node, the 
three non-zero entries are the distances from the three vertices of the 
triangle in the mesh that the point lies in. The A matrix is multiplied 
against the observed random effects for nodes in the mesh and estimates 
of the random effects at each point are found and usable in the model 
(Bakka et al., 2019). 

2.3. GF spatial age-length key 

The GFB model presented here and implemented in barrierALK 
combines the CRL and barrier approach together. This GFB model is 

logit(πa[xi]) = αa + βali + ξa,s (10)  

where αa is the intercept for age a, βa is the length parameter for age a 
and ξa,s is the spatial intercept resulting from the GF at location s: 

ξa,s =

⎧
⎪⎨

⎪⎩

MVN
(

0,
σ2

u

(1 − φ2
a)

c(s, 0)
)

a = 1

MVN
(
φaξa− 1,s, σ2

uc(s, 0)
)

a > 1.

(11)  

The φa allows for spatial correlation between age classes, if it exists. 
What this means in practical terms is that if age structure varies in space, 
φa can measure how correlated that relationship may be. 

2.4. Estimation 

Estimation is performed using the R package Template Model Builder 
(TMB). TMB uses the Laplace approximation to approximate the in-
tegrals in the log likelihood resulting from the random effects that need 
to be integrated out. TMB uses Automatic Differentiation (AD) to 
generate the derivatives for a given objective function which can result 
in a speed up when paired with an optimizer capable of utilizing de-
rivative information (Kristensen et al., 2016). 

When fitting ordinal regression models via Maximum Likelihood 
Estimation (MLE), optimization algorithms will often fall into local 
minima resulting in unrealistic parameter estimates which also has the 
effect of reducing the predictive accuracy of the model. Penalizing the 
log likelihood can improve parameter estimates for classes with low 
numbers of observations (Harrell, 2014, pp. 323, 209–213). The 
penalized log likelihood is written as 

logL −
1
2

λβ
′

Pβ (12)  

where L is the likelihood from an unpenalized model, β being the vector 
of the fixed effects coefficients, λ the penalty factor chosen by cross 
validation and P the penalty matrix. Parameters relating to continuous 
variables are scaled in P by their standard deviation, parameters relating 
to categorical variables use the penalty function 

∑c
i (βfi − βf )

2 where f is 
a categorical variable in the model with c levels, βf is the mean of all c βfi. 
This shrinks parameters towards the mean parameter value which 
avoids biasing towards a specific level (Harrell, 2014, pp. 209–213) 
(Verweij and Van Houwelingen, 1994). 

The optimal choice of λ can be chosen by k-fold cross validation (CV). 
This can be quite time intensive for large spatial models. Due to the 
presence of random effects in the spatial ALK model, an approach like 
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Generalized Cross Validation (GCV) which would avoid the time 
consuming k-fold CV can also not be used due to the difficulty in finding 
an influence matrix if it even exists at all. Instead a modified Akaike 
Information Criterion (AIC) is proposed here in place of k-fold CV. The 
modified AIC used here is defined to be 

LR χ2 − effective degrees of freedom (13)  

where LR χ2 is the likelihood ratio value comparing the null model 
containing only an intercept to the model with the final penalized pa-
rameters ignoring the penalty function and the effective degrees of 
freedom that result from taking the penalization into account that are 
found by 

trace(I(βP)V(βP)) (14)  

where βP is the vector of penalized fixed effects parameters resulting 
from MLE, I(βP) is the information matrix resulting from the model using 
the penalized parameters but ignoring the penalty function and V(βP) is 
the covariance matrix for the penalized parameters of the model when 
taking the penalty function into account (Gray, 1992; Verweij and Van 
Houwelingen, 1994). The model that maximizes the modified AIC over 
the selection of possible λ values is the version of the model most likely 
to result in the best predictive accuracy for a new data set. This method 
has been shown to be asymptotically equivalent to CV approaches for 
selecting the penalty factor (Harrell, 2014, pp. 209–213). While the 
modified AIC approach does not explicitly account for random effects in 
the model, comparisons are only made between models based on the 
same data and with the same number of random effects, only the value of 
λ changes. The values of λ considered for penalization for the non-spatial 
CRL and the proposed GFB model are 0, 0.001, 0.01, 0.1, 0.25, 0.5, 1, 2, 
5 and 10. 

2.5. Simulation study 

Survey data was simulated using a modified version of the Sim-
Survey R package available on GitHub. SimSurvey was originally 
designed with the purpose of testing different stratified random sam-
pling survey designs for a research vessel survey aimed at estimating 
abundance. SimSurvey is capable of generating data quite similar to 
those resulting from a stratified random survey design like the multi- 
species bottom trawl research vessel survey that DFO performs annu-
ally in the Newfoundland region and elsewhere. With simulated data it’s 
possible to know the true age structure and the abundance numbers for 
the population. Further details on the simulation study are provided in 
Appendix A (Regular et al., 2020). 

The population simulated with SimSurvey is similar to the cod 
population living in Northwest Atlantic Fisheries Organization (NAFO) 
subdivision 3Ps. The fish were set to grow according to a Von Bertalanffy 
growth curve with an asymptotic length (L∞) of 120 cm and K parameter 
of 0.5. The population is spatially distributed within grid cells grouped 
into strata based on depth and a stratified random survey is taken by 
sampling random cells. A subsample of fish from sampled locations is 
obtained based on length stratified sampling and considered to have 
been “aged”. This subsample of fish is what is used to construct the four 
different ALKs described below. 

Spatial methods have an opportunity to improve the estimate of age 
structure by being better able to discriminate between age classes with 
overlapping length distributions by taking into account the location 
where sampling occurred. The simulated population does not let length 
at age vary from location to location rather the distribution of age classes 
varies spatially. 

The four different aging methods applied to the simulated survey 
data are the traditional ALK, a smooth ALK made from a CRL model 
involving only length as a covariate, 

logit(πa[xi]) = αa + βali (15)  

a GAM based model similar to the one presented in Berg and Kristensen 
(2012), 

logit(πa[xi]) = αa + βali + f (s) (16)  

where f is a function of location s using thin-plate regression splines and 
finally the model proposed here as described in Eq. (10). An automatic 
selection of the maximum basis dimension (k) is used for the thin-plate 
regression splines with AIC smoothness selection. The automatic selec-
tion is based on the method used by the DATRAS package discussed in 
Berg and Kristensen (2012) where the maximum basis dimension is the 
number of unique observations of the covariates appearing in the 
smooth terms minus one (i.e. the number of unique (non-zero) tow lo-
cations minus one) unless there are less than 10 unique locations for 
which then it falls back to a GLM. If including spatial information in-
creases the accuracy of predicting what age class a fish belongs to, then 
the stratified survey estimates of abundance at age should also be closer 
to true abundance numbers at age. For all of the approaches age 10 was 
taken to be a plus group. 

The data were simulated in a simplified area with a large peninsula- 
like landmass represented by rectangles. A plot of the landmass and an 
example simulation mesh can be found in Appendix A. In practice any 
physical boundary can be defined with the only caveat being that more 
detailed boundaries require more nodes in the mesh and increase the 
computational time required. A simplified boundary was chosen for 
computational convenience to reduce the required time needed to run 
the model hundreds of times. 500 simulated surveys were performed, 
and stratified survey estimates of abundance were created for each 
survey using the same methods outlined in (Smith and Somerton, 1981) 
and the same method applied to DFO’s bottom trawl multi-species sur-
vey conducted in the Newfoundland region annually (Ings et al., 2019). 
The simulation does not account for observation error and each simu-
lation has a new realization of the true abundance in each run. The Root 
Mean Squared Error (RMSE) is calculated on the true total population at 
age available to the survey (adjusting for selectivity) and the stratified 
survey estimates resulting from the age frequencies made from each of 
the four methods, the GFB, GAM, non-spatial CRL and traditional ALK. 

For the simulated survey 96 tows were conducted per survey in 48 
strata based on depth. A mean of 2774.26 simulated fish were caught 
and measured in each survey with a mean of 454.38 of those being 
“aged” and used for constructing the ALKs. Length stratified sampling 
was used in selecting the subsamples to be aged. Out of 500 simulations, 
73 failed to due to too low sampling numbers. Specifically in those 
simulations, zero catches of older age classes occurred which prevents 
the models from being used as estimates of coefficients for those age 
classes cannot be obtained. In practice this could be avoided by reducing 
the number of age groups below where the low sampling numbers occur. 

For each simulation the total stratified abundance at age is calcu-
lated. This follows the methods outlined in Smith and Somerton (1981) 
that developed from stratifed random sampling techniques described in 
greater detail in books like Cochran (1977) and Lohr (2009). The survey 
area is divided into N trawlable units and H strata, where Nh is the 
number of trawlable units in strata h. The true mean catch at age a (Yah) 
in survey in stratum h is found by 

Yah =

∑Nh
i=1yahi

Nh
, (17)  

where yahi is the survey catch at age in the ith unit. The total population 
estimate at age a is then 

Ŷ a = N
∑H

h=1

Nh

N
Yah (18)  

(Cochran, 1977; Lohr, 2009; Smith and Somerton, 1981). 

J. Babyn et al.                                                                                                                                                                                                                                   



Fisheries Research 240 (2021) 105956

6

Fig. 1. The RMSE of the stratified survey estimate of abundance at age versus the true total abundance at age in the simulation. The top figure compares the RMSE of 
each of the methods against one another with a diagonal line illustrates where points would lie if the two methods were identical. The percentages are the percent of 
simulations where the RMSE of the model on the x-axis is less than or equal to the RMSE of the model on the y-axis. Plots along the diagonal of the top figure are 
density plots of the RMSE for each method. The bottom part of the figure is a boxplot of the RMSE for each method. 
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2.6. Application 

Atlantic cod and American Plaice are distributed throughout NAFO 
subdivision 3Ps, but during most years abundances is highest at 
particular locations such as the Halibut Channel (Cod) or the southeast 
slope of St. Pierre Bank (Plaice). The ALK methods discussed above were 
applied to both Cod and American Plaice data from DFO’s multi-species 
bottom trawl RV survey of NAFO subdivision 3Ps (Ings et al., 2019; 
Morgan et al., 2020). For the model based methods, the same model 
formulations given in Eqs. (10), (15) and (16) were applied to both 
datasets along with the empirical ALK. Cod data are from the start of 
DFO’s inshore/offshore survey in 1996 to 2018. American Plaice data 
are limited until 2013 due to the lack of aged otoliths (Morgan et al., 
2020). Samples for otolith collection for both species were subject to 
length-stratified sampling and the number of otoliths collected varies 
from year to year (Ings et al., 2019). Cod otolith collection uses a sam-
pling scheme requiring otoliths to be collected from five different areas 
around NAFO subdivision 3Ps Ings et al. (2019). However American 
Plaice collection simply requires otoliths to be collected from the entire 
area. In 2006 the survey was unsuccessfully completed (Ings et al., 
2019). The survey areas for the two species are similar but not the same 
since the survey area for cod does not include all of strata (Ings et al., 
2019; Morgan et al., 2020). Since the study areas differ in size, two 
different meshes were required for each of the applications. For cod a 
more detailed boundary and higher density mesh for a more exact 
approximation was used, while the Plaice analysis was performed using 
a less dense mesh with a less detailed boundary. All methods were 
applied to each year of data independently of one another. 

The mesh design can have an impact on the performance of the 
model. If a mesh is not dense enough, the approximation may not work 
well. Mesh designs can sometimes also impact the convergence of the 
model. Care should also be taken to ensure that all points that should be 

outside the boundary, are in fact. Further details on how to create a 
mesh for a barrier model can be seen in the referenced tutorial (Bakka, n. 
d.). As with the simulation in the previous section, age frequencies were 
generated using the same four methods and then stratified estimates of 
abundance were obtained. 

3. Results 

3.1. Simulation study 

The two spatial models performed similarly with the GFB model 
having a lower RMSE (between the true abundance at age and the 
estimated abundance at age across the same survey) than the traditional 
ALK in 76.9% of simulations and the GAM model 67.8% of simulations. 
Overall 40.5% of the time the GFB model had the lowest error across all 
models and the GAM model 36.8% of the time. The upper part of Fig. 1 is 
a pairs plot of RMSE comparing each method against one another, while 
the diagonal elements are density plots of the RMSE of each model. The 
bottom of Fig. 1 is a boxplot of the RMSE for each method. Overall the 
two spatial models yield tighter bounds than the non-spatial models. 

The bottom row of Fig. 2 is the true simulated spatial distribution for 
fish aged 4,5 & 6 for one simulation. The ages are somewhat overlapping 
in their spatial distribution but are centred in different areas. The spatial 
ALKs are better able to discriminate between ages by considering the 
location of the samples. This is evident in the top row of Fig. 2 which 
shows the probability of being a fish being age 4, 5 or 6 given a length of 
40 cm across the simulated study area as obtained by the GFB model. 
The probability of being in that age class increases when predicting over 
the main bulk of that age class. The overall trend of the GAM approach is 
very similar to that of the GFB model while also displaying evidence of 
undesired smoothing underneath landmasses. Both the GFB and GAM 
yield a higher probability for 5 year olds south of the peninsula than 

Fig. 2. Top row is predicted probabilities in 
each grid cell of fish being aged 4,5, and 6 in 
one simulation with a length of 40 cm as pre-
dicted by the GFB model. Middle is the pre-
dicted probabilities for the same as predicted by 
the GAM model and the bottom row is the true 
simulated proportion of fish aged 4,5 and 6 in 
each grid cell as distributed by SimSurvey. 
The non-spatial CRL model found the proba-
bility of 23.1%, 10.9% and 18.6% for fish being 
aged 4, 5 and 6 respectively having a length of 
40 cm. The traditional ALK method found the 
probability of 27.8%, 5.6% and 22.2% for fish 
being aged 4,5 and 6 respectively.   
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Fig. 3. The difference between the true proportion for each age in every grid cell and the proportion predicted by GFB model and traditional ALK for the same 
simulation as in Fig. 2 for fish available to the survey. A perfect model would be a flat green with no difference in proportion between the two. 

J. Babyn et al.                                                                                                                                                                                                                                   



Fisheries Research 240 (2021) 105956

9

Fig. 4. The median RMSE across all the simulations for the 160 grid cells surrounding the bay for each of the four methods by age. Both spatial models perform 
considerably better in each cell than the non-spatial methods. The x and y are the spatial coordinates used in the simulation and grey is the landmass. 

Table 2 
The percentage of the 160 grid cells surrounding the simulation bay where the median RMSE in each cell from all simulations is lower for either the GAM or GFB models 
by age. For ages four and up the GFB model outperforms the GAM which is the majority of biomass available to the survey.   

1 2 3 4 5 6 7 8 9 10 

GAM 100.000 100.000 92.500 38.125 28.750 28.750 31.875 10.000 1.875 41.250 
GFB 0.000 0.000 7.500 61.875 71.250 71.250 68.125 90.000 98.125 58.750  
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Fig. 5. Total abundance estimates by age for American Plaice within NAFO division 3P for the years from 1996 to 2013, not including 2006. Abundance estimates at 
age are largely similar across all four methods and follow the same general trends. 

Fig. 6. A visual representation of three ALKs generated using the GF & GAM methods at the two locations shown (P-Placentia Bay, F-Fortune Bay) for the 2003 
survey year. Each vertical slice of the graphs in columns 2 and 3 must sum to 1 and is like a row in an ALK. The maps are also surfaces showing the predicted 
probabilities of American Plaice being 8 years old with a length of 35 cm. ALKs constructed at different locations result in different ALKs with either model. Points 
represent sampling locations from which otoliths were collected during that year. 

Fig. 7. Total abundance estimates by age for the cod dataset for the years from 1996 to 2018, not including 2006. Trends across years are broadly similar be-
tween methods. 
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might be expected by the true proportions. This is due to the fact that the 
survey caught a larger share of age 5s than for other age classes. 

Each fish’s length in the population is simulated when the population 
is generated and then distributed spatially into the simulation grid cells 
such that the age and length for every fish in the simulation is known. 
The true proportion at age in each of the 4833 simulation grid cells was 
compared to the predicted proportion at age for each of the four 
methods. Fig. 3a captures the difference between the true proportion of 
an age and the predicted proportion from the GFB model in each of the 
simulation grid cells for the same simulation used in Fig. 2. If the model 
was perfect then the entire map would be a single solid color repre-
senting zero difference. 

Fig. 3b is the same style of plot, except the predicted proportions 
come from the traditional ALK. Results are very similar to those for the 
non-spatial CRL model. Compared to the GFB method it has larger dif-
ferences in proportion for the older ages. Younger ages have more of the 
difference in age proportion spread out across the space than concen-
trated in a single region than the GFB model. 

To assess how well the GFB model improves performance near a 
landmass the RMSE for the 160 simulation grid cells surrounding the bay 
was calculated. Fig. 4 shows the median RMSE across all simulations in 
each of those grid cells by age from each of the four methods. The me-
dian RMSE is typically much lower in the two spatial methods than the 
two non-spatial ones. Table 2 shows the percentage of the 160 cells 
where either the GFB model or GAM model has a lower median RMSE. 
For ages 3 and below the GAM model has a lower median RMSE for most 
cells but for ages 4 and up the GFB model outperforms it. On average 
ages 4 and up make up over 74% of the biomass available to the survey 
in those 160 grid cell suggesting the GFB model represents an 
improvement on the majority of fish. 

Overall the simulation showed that both spatial ALKs methods are 
capable of improving estimates of abundance at age from a stratified 
random survey. This suggests that the age frequencies created by the 
spatial ALKs are more accurate. For ages that make up a larger share of 
the abundance like ages 4 through 7 the reduction in error is very 
noticeable as can be seen in the example between the GFB model and 
traditional ALK in Fig. 3 and around the landmass for all methods in 
Fig. 4. However for other age classes like one and two the differences can 
be minor. 

3.2. Application 

Atlantic cod and American Plaice are distributed throughout NAFO 
subdivision 3Ps, but during most years abundances is highest at 
particular locations such as the Halibut Channel (Cod) or the southeast 
slope of St. Pierre Bank (Plaice). The ALK methods discussed above were 
applied to both Cod and American Plaice data from DFO’s multi-species 
bottom trawl RV survey of NAFO subdivision 3Ps (Ings et al., 2019; 
Morgan et al., 2020). For the model based methods, the same model 

Fig. 8. A visual representation of three ALKs generated using the GF & GAM methods at the two locations shown (P-Placentia Bay, F-Fortune Bay) for the 2011 
survey year. Each vertical slice of the graphs in columns 2 and 3 must sum to 1 and is like a row in an ALK. The maps are also surfaces showing the predicted 
probabilities of cod being 5 years old with a length of 50 cm. ALKs constructed at different locations result in different ALKs with either model. Points represent 
sampling locations from which otoliths were collected during that year. 

Fig. 9. An example of a mesh of the simulated survey area for one simulation. 
The coloured rectangles make up the boundary area, circles are sampled loca-
tions. Triangles form the mesh and each vertex is an element in the covari-
ance matrix. 
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formulations given in Eqs. (10), (15) and (16) were applied to both 
datasets along with the empirical ALK. Cod data are from the start of 
DFO’s inshore/offshore survey in 1996 to 2018. American Plaice data 
are limited until 2013 due to the lack of aged otoliths (Morgan et al., 
2020). Samples for otolith collection for both species were subject to 
length-stratified sampling and the number of otoliths collected varies 
from year to year (Ings et al., 2019). Cod otolith collection uses a sam-
pling scheme requiring otoliths to be collected from five different areas 
around NAFO subdivision 3Ps Ings et al. (2019). However American 
Plaice collection simply requires otoliths to be collected from the entire 
area. In 2006 the survey was unsuccessfully completed (Ings et al., 
2019). The survey areas for the two species are similar but not the same 
since the survey area for cod does not include all of strata (Ings et al., 
2019; Morgan et al., 2020). Since the study areas differ in size, two 
different meshes were required for each of the applications. For cod a 
more detailed boundary and higher density mesh for a more exact 
approximation was used, while the Plaice analysis was performed using 
a less dense mesh with a less detailed boundary. All methods were 
applied to each year of data independently of one another. 

The mesh design can have an impact on the performance of the 
model. If a mesh is not dense enough, the approximation may not work 
well. Mesh designs can sometimes also impact the convergence of the 
model. Care should also be taken to ensure that all points that should be 
outside the boundary, are in fact. Further details on how to create a 
mesh for a barrier model can be seen in the referenced tutorial (Bakka, n. 
d.). As with the simulation in the previous section, age frequencies were 
generated using the same four methods and then stratified estimates of 
abundance were obtained. 

3.2.1. American Plaice 
American Plaice are associated with fine substrates and both juve-

niles and adults frequently occur in the same habitats (Morgan, 2000; 
Johnson, 2004). They do not conduct extensive annual migrations 

(Johnson, 2004). The model based methods were fit from ages one to 
thirteen except for a handful of years where no age one Plaice otoliths 
sampled. In those cases the models were run on ages two through thir-
teen. Estimates of total abundance at age for American Plaice for the four 
different method are shown in Fig. 5. With the exception of age one 
plaice, the four methods result in very similar estimates for the majority 
of the time series of total abundance at age (obtained by aggregating 
across space using the Stratified Mean Method (SMM)). Closer to the end 
of the time series there is a divergence for some age groups like 7 and 8 
due to data sparsity. 

Despite the similarity in aggregated abundance metrics across 
methods, when looking at the spatial GAM and GFB results there are 
differences in the predicted probabilities. For example in Fig. 6, the 2003 
survey year the unconditional probabilities of an American Plaice being 
age 8 with a length of 35 cm were predicted across the space for both the 
GFB and GAM models. There does appear to be evidence of the proba-
bilities being smoothed underneath the peninsula and into the bay in the 
GAM version that does not occur with the GFB models due to its support 
for physical barriers. Both models make it clear that the probabilities are 
spatially varying and there is a dependence on location. When looking at 
other ages not shown here, the two spatial methods do not always agree, 
the GAM method will sometimes predict almost flat gradients across 
space while the GFB for the same year will vary more across space. Fig. 6 
also showcases examples of spatial ALK constructed from the GFB and 
GAM models at two different points. One at the tip of Placentia Bay, and 
one in Fortune Bay. Each curve represents the proportion at each length 
taken up by that age (like the columns of an ALK) while each vertical 
slice at a length must sum to one (like the rows of an ALK). Since age 13 
was used as a plus group as fish get longer they end up more likely to 
land there. The two ALKs are different at each of the two points. For 
instance, the ALKs estimated by the GFB model shows more overlap 
between ages 1 and 2 in Placentia Bay than Fortune Bay while still 
having more overlap between the first two ages when compared against 

Fig. 10. The true abundance at age (in thousands) for the simulation used in Figs. 3 and 2.  

J. Babyn et al.                                                                                                                                                                                                                                   



Fisheries Research 240 (2021) 105956

13

the ALKs at the same points from the GAM model. 

3.2.2. Cod 
In contrast to American Plaice, Atlantic Cod occur over a broader 

range of substrates with juveniles and adults overlapping in some broad 
areas whereas only juveniles may be more frequently sampled at some 
locations closer to the coast (Dalley and Anderson, 1997; Fahay et al., 
1999). Adult Atlantic Cod conduct extensive migrations from areas 
offshore to shallow coastal locations and there is evidence to suggest 
some alongshore movements as well (Fahay et al., 1999; Brattey et al., 
2002). 

For the Cod data, age eleven was taken to be the plus group for every 
year and the models were fit to ages one through eleven for all years. As 
for the American Plaice data the stratified estimates of abundance were 
generated using all four methods and are shown in Fig. 7. Each of the 
four aging methods result in similar trends. The two non-spatial methods 
both show very similar trends with almost completely overlapping lines 
in most years. The spatial methods, GAM and GFB are largely similar in 
trend but differ occasionally from the non-spatial methods in (e.g. age 
10 and 11 in 2004). 

ALKs were generated at two different locations within 3Ps. Fig. 8 
displays the locations used to create these ALKs using 3 cm length bins 
along with corresponding visual representations. ALKs constructed at 
each of the two areas are different from one another. The GAM model 
finds proportion of fish being age 10 and 11 in Fortune Bay to be 
essentially zero and a similar situation occurs in Placentia Bay except for 
the last few age groups. 

The unconditional probabilities of Cod being a certain age given 
various lengths were examined spatially for both the GFB and GAM 
methods. Both of the spatial methods suggest that there is a difference 
spatially in age for Cod of a given length. An example of this for the 
probabilities of being age 5 for 50 cm Cod can be seen in the left hand 
side of Fig. 8 for both the GAM and GFB models. The GFB finds a lower 
probability of Cod being age 5 in the tip of Fortune Bay, the GAM model 
however shows evidence of smoothing underneath the landmass. Using 
the GFB model it can be seen that Cod on the northwestern portion of the 
survey area also have a much lower probability of being age 5 at 50 cm 
than those that live in the rest of survey area. 

The simulation study presented in Section 2.5 was designed to have 
an age and length structure that mimics the 3Ps cod population with a 
stratified survey design similar to the one used in the region. Based on 
the results of the simulation study it is expected that for most years the 
GFB model should provide more accurate estimates of the abundance at 
age for ages 4 and up. 

4. Discussion 

Errors related to the process of obtaining age estimates are often 
ignored in age structured stock assessment models. Model based ap-
proaches offer an avenue for incorporating such errors even when a non- 
spatial method of aging is used. If errors in the aging process are ignored 
estimates obtained from the stock assessment model provide a false 
sense of precision and may impact derived quantities (e.g. spawning 
stock biomass). The simulation study here also suggests that spatial 

Fig. 11. The Probability of an American Plaice being each age class in the study area given a length of 35 cm as predicted by the GAM model.  
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methods have the potential to further reduce errors resulting from 
applying an ALK. Future work includes incorporating a spatial ALK 
model into a stock assessment model directly to see exactly how derived 
quantities and associated errors may be affected by the age estimation 
process. 

Incorporating more spatial information into the stock assessment 
process has the potential to increase precision. It is still not uncommon 
for stock assessment models to simply ignore or aggregate over space 
(Punt, 2019), often taking an areal approach instead of a pointwise one. 
Our GFB model offers another choice of spatial ALK that could be in-
tegrated into stock assessment models particularly when there may be 
landmasses present in the study area. 

In addition, both the simulation study and the application suggest 
that even in cases where it is not possible or desirable to fit a spatial ALK 
model due to data limitations or other constraints it may still be 
worthwhile using a model based approach to construct ALKs in order to 
gain the aforementioned benefits of smoothing and bridging of gaps. 

Spatial ALKs can provide improved estimates at age over non-spatial 
methods. The simulation study showed that over three quarters of the 
time using a spatial method to generate the ALK had a reduced RMSE for 
the true abundance numbers at age as compared to traditional methods. 
It also suggested that spatial methods can reduce the error across all ages 
in both the entire study area, and in spatial pockets for most ages. 
Examining the probabilities of a fish being a given length may indeed 
give insight into where certain age classes may be distributed during the 
time of the survey. 

The GFB had the lowest RMSE more often than the other three 

models indicating it led to abundance at age estimates closer to the true 
values. Since the simulations distributed the fish randomly among the 
survey grid, in some simulations the majority of fish may not have been 
close to the landmass limiting the performance benefits of the GFB 
model to be similar to the GAM model. The GFB model also had the 
lowest maximum RMSE among all models suggesting it will not perform 
worse in most scenarios. The GFB model also provides more realistic 
plots of the probabilities of age given length by preventing them from 
smoothing beneath landmasses. 

When looking at the two applications presented, neither of the 
spatial methods made obviously large changes to the abundance indices 
at age. However when examining the predicted probabilities at age there 
is a clear indication that they do vary spatially. While there are simi-
larities between the two spatial methods for the bulk of the probabilities 
predicted, the fact that the GFB model supports physical barriers is 
evident in how the bay is treated as captured in Figs. 6 and 8 . ALKs are 
demonstrated to vary with space. 

This work makes evident that applying a non-spatial ALK may have 
ramifications for calculating indices of abundance. Combined with the 
fact that errors from the aging process are often ignored, there is a strong 
argument for integrating spatial ALK models directly into stock assess-
ment models. 
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Fig. 12. The Probability of an American Plaice being each age class in the study area given a length of 35 cm as predicted by the GFB model.  
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Fig. 13. The Probability of a Cod being each age class in the study area given a length of 50 cm as predicted by the GAM model.  

Fig. 14. The Probability of a Cod being each age class in the study area given a length of 50 cm as predicted by the GFB model.  
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Fig. 15. The relative error between the predicted proportions and the true proportions in each simulation cell. The median relative error for the GFB model is 
− 0.1334 and − 0.4038 for the traditional ALK. Both methods have the smallest relative error occur on the right hand side for age 5 fish which is − 467.9 for the GFB 
model and − 2443.91 for the traditional ALK. 
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Appendix A. Simulation code 

The simulation study uses largely the same process for SimSurvey 
as was outlined and described in Regular et al. (2020). To assess the 
effectiveness of each aging method spatially (as described in Fig. 3) the 
lengths and ages of every single fish needs to be simulated. SimSurvey 
only applies individual lengths as fish are sampled, only storing the 
number of fish of each age in the simulation grid cells which greatly 
reduces storage costs. To have the lengths available for every single fish 
SimSurvey was modified to generate fish lengths from the growth 
curve at the same time as the population is generated. These lengths are 
then kept as fish are distributed spatially into the simulation grid cells. 
The modified functions allowing all individual fish lengths to be known 
were created in a private fork of the SimSurvey package. 

In addition the Age-year-space covariance discussed in Appendix S3 
of Regular et al. (2020) was instead obtained using a GMRF approxi-
mation with support for physical barriers as described in Section 2.2.1. A 
precision matrix Q is generated from a mesh and a specified set of 
hyperparameters. This is then approximated for each grid point in the 
SimSurvey simulation. This has the benefit over the default Sim-
Survey method of constraining the simulation to also have to abide by 
any physical barriers present and also provides a speed boost by using a 
GMRF approximation when the mesh has less nodes than there are cells 
in the grid. An example of a mesh used in the simulation is shown in 
Fig. 9 and example of the true abundance at age for the simulation 
referred to in Figs. 3a and 2 is shown in Fig. 10 (Figs. 11–15). 
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